Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:19:25.607Z Has data issue: false hasContentIssue false

Growth of AlGaN/GaN HEMTs on Silicon Substrates by MBE

Published online by Cambridge University Press:  01 February 2011

Fabrice Semond
Affiliation:
[email protected], CRHEA, CNRS, rue Bernard Gregory, Valbonne, 06560, France
Yvon Cordier
Affiliation:
[email protected], CNRS, CRHEA, rue Bernard Gregory, Valbonne, 06560, France
Franck Natali
Affiliation:
[email protected], CNRS, CRHEA, rue Bernard Gregory, Valbonne, 06560, France
Arnaud Le Louarn
Affiliation:
[email protected], CNRS, CRHEA, rue Bernard Gregory, Valbonne, 06560, France
Stéphane Vézian
Affiliation:
[email protected], CNRS, CRHEA, rue Bernard Gregory, Valbonne, 06560, France
Sylvain Joblot
Affiliation:
[email protected], CNRS, CRHEA, rue Bernard Gregory, Valbonne, 06560, France
Sébastien Chenot
Affiliation:
[email protected], CNRS, CRHEA, rue Bernard Gregory, Valbonne, 06560, France
Nicolas Baron
Affiliation:
[email protected], CNRS, CRHEA, rue Bernard Gregory, Valbonne, 06560, France
Eric Frayssinet
Affiliation:
[email protected], CNRS, CRHEA, rue Bernard Gregory, Valbonne, 06560, France
Jean-Christophe Moreno
Affiliation:
[email protected], CNRS, CRHEA, rue Bernard Gregory, Valbonne, 06560, France
Jean Massies
Affiliation:
[email protected], CNRS, CRHEA, rue Bernard Gregory, Valbonne, 06560, France
Get access

Abstract

During the last ten years, we have developed an efficient growth process of nitrides on silicon substrates by molecular beam epitaxy. In collaboration with partners AlGaN/GaN HEMTs on Si having promising performances have been fabricated. Focusing on the growth aspect and underlying some of the key issues, we present in this paper an overview of our contribution in the field of AlGaN/GaN HEMTs on Si substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Khan, M. Asif et al., Appl. Phys. Lett. 60, 3027 (1992)Google Scholar
2. Mishra, U. K. et al., IEEE Proceedings 96(2), 287 (2008)Google Scholar
3. Chumbes, E. M. et al., IEEE Proceedings of Int. Electron Devices Meeting, p. 397 (1999); A.T. Schremer et al., Appl. Phys. Lett. 76, 736 (2000); E.M. Chumbes et al., IEEE Transactions on Electron Devices, 48(3), 420 (2001)Google Scholar
4. Semond, F. et al., Appl. Phys. Lett. 78, 335 (2001)Google Scholar
5. Semond, F. et al., Phys. Stat. Sol.(a) 188, 501 (2001)Google Scholar
6. Brown, J. D. et al., Solid-State Electron. 46, 1535 (2002)Google Scholar
7. Cordier, Y. et al., Electronics Letters 38, 91 (2002)Google Scholar
8. Hoël, V. et al., Electronics Letters 38, 750 (2002)Google Scholar
9. Velas, N. et al., IEEE Electron Device Lett., vol. 23(8), 461 (2002)Google Scholar
10. Javorka, P. et al., Electronics Letters 38, 288 (2002)Google Scholar
11. Curutchet, A. et al., Microelectronics Reliability 43, 1713 (2003)Google Scholar
12. Velas, N. et al., IEEE Microwave and Wireless components Lett., vol. 13(3), 99 (2003)Google Scholar
13. Cordier, Y. et al., J. Crystal Growth 251, 811 (2003)Google Scholar
14. Behtash, R. et al., Electronics Letters 39, 626 (2003)Google Scholar
15. Dumka, D.C. et al., Electron. Lett., vol 40(16), 1023 (2004); ibid. vol 40(24), (2004)Google Scholar
16. Minko, A. et al., IEEE Electron Device Lett., vol. 25(4), 167 (2004); ibid. vol. 25(7), 453 (2004)Google Scholar
17. Johnson, J.W. et al., IEEE Electron Device Lett., vol. 25(7), 459 (2004)Google Scholar
18. Ducatteau, D. et al., IEEE Electron Device Lett., vol. 27(1), 7 (2006)Google Scholar
19. Cheng, K. et al., Jpn. J. Appl. Phys. vol. 47(3), 1553 (2008)Google Scholar
20. Yoshida, S. et al., IEEE Proc.18th Int.l Symp. Power Semicond. Devices and IC.s, p.4 (2006)Google Scholar
21. Iwakami, S. et al., Jpn. J. Appl. Phys. vol. 46(24), L587 (2007)Google Scholar
22. Louarn, A. Le, PhD thesis Université Nice Sophia-Antipolis, CRHEA-CNRS (2006)Google Scholar
23. Vézian, S. et al., J. Crystal Growth 303, 419 (2007)Google Scholar
24. Natali, F. PhD thesis Université Nice Sophia-Antipolis, CRHEA-CNRS (2003)Google Scholar
25. Langer, R. et al., J. Crystal Growth 205, 31 (1999)Google Scholar
26. Frayssinet, E. et al., to be publishedGoogle Scholar
27.Patent filed by CRHEA-CNRS, PTC/FR 01/01777, June 2001 Google Scholar
28. Vézian, S. et al., Phys. Rev. B 69, 125329 (2004)Google Scholar
29. Baron, N. et al., MRS 2008, Symposium CGoogle Scholar
30.http://www.soitec.com/picogiga/research-development/Google Scholar
31. Baron, N. PhD thesis Université Nice Sophia-Antipolis, CRHEA-CNRS (2009)Google Scholar
32. Joblot, S. PhD thesis Université Nice Sophia-Antipolis, CRHEA-CNRS (2007)Google Scholar
33. Joblot, S. et al., Electronics Letters 42, 117 (2006)Google Scholar
34. Joblot, S. et al., Superlattices and microstructures 40, 295299 (2006)Google Scholar