Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T23:51:55.852Z Has data issue: false hasContentIssue false

The Growth and In-Situ Doping of SiGe/Si Strained Heterostructures by RTP/VLP-CVD

Published online by Cambridge University Press:  22 February 2011

Shulin Gu
Affiliation:
Department of Physics, Nanjing University, Nanjing 210008, China
Youdou Zheng
Affiliation:
Department of Physics, Nanjing University, Nanjing 210008, China
Rong Zhang
Affiliation:
Department of Physics, Nanjing University, Nanjing 210008, China
Ronghua Wang
Affiliation:
Department of Physics, Nanjing University, Nanjing 210008, China
Ping Han
Affiliation:
Department of Physics, Nanjing University, Nanjing 210008, China
Xiaodong Huang
Affiliation:
Department of Physics, Nanjing University, Nanjing 210008, China
Peixing Zhong
Affiliation:
Department of Physics, Nanjing University, Nanjing 210008, China
Liqun Hu
Affiliation:
Department of Physics, Nanjing University, Nanjing 210008, China
Shunmin Zhu
Affiliation:
Department of Physics, Nanjing University, Nanjing 210008, China
J.N. Chen
Affiliation:
Charles Evans & Associates, Redwood, LA 94063, USA
Get access

Abstract

SiH4 and GeH4 Deposition and In-Situ Doping of SiGe/Si Strained Heterostructures by Rapid Thermal Process Very Low Pressure Chemical Vapor Deposition method have been studied in this paper. Ge incorporation rate increases to a maximum value and then decreases as temperature increases, the growth rate of SiGe alloy reaches its maximum value and then decreases as Ge composition increases. Ge incorporation also enhances Si deposition rate in SiGe alloy. The Boron and Phosphorus doping would change thegrowth rate of SiGe layers and the sharp doping interfaces in SiGe/Si heterostructures have been obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bean, J. C., Science 230, 127(1985)CrossRefGoogle Scholar
2. Asai, M., Ueba, H. and Tatsuyama, C., J. Appl. Phys. 58, 2577(1985)CrossRefGoogle Scholar
3. Racanelli, Marco and Greve, D. W., Appl. Phys. Lett. 56(25),2254(1990)CrossRefGoogle Scholar
4. Greve, D. W. and Racanelli, Marco, J. Vac. Sci. Technol. B8(3), 511(1990)CrossRefGoogle Scholar
5. Zhong, Yulin, Ozturk, Mehmet C., Grider, Douglas T., Wortman, Jimmie J. and Littlejohn, Michael A., Appl. Phys. Lett. 57(20), 2090(1990)CrossRefGoogle Scholar
6. Tsai, Curtis, Jang, Syun-Ming, Tsai, Julie and Reif, Rafael, J. Appl. Phys. 69(12), 8158(1991)CrossRefGoogle Scholar
7. Jang, Syun-Ming, Reif, Rafael, Appl. Phys. Lett. 60(6), 707(1992)CrossRefGoogle Scholar
8. Boer, W. B. de and Meyer, D. J., Appl. Phys. Lett. 58(12), 1286(1991)CrossRefGoogle Scholar
9. Jang, Syun-Ming and Reif, Rafael, Appl. Phys. Lett. 59(24), 3162(1991)CrossRefGoogle Scholar
10. Robbins, D. J., Glasper, J. L., Cullis, A. G. and Leong, W. Y., J. Appl. Phys. 69(6), 3729(1991)CrossRefGoogle Scholar
11. Sedgwick, T. O. and Agnello, P. D., J. Vac. Sci. Technol. A10(4), 1913(1992)CrossRefGoogle Scholar
12. Youdou, Zheng, Rong, Zhang, liqun, Hu, ruolian, Jiang, Peixin, Zhong, Shidong, Yu and Duan, Feng Proceeding of 20th ICPS. Edited by Anastassakis, E. M. and Joannopoulos, J. D., World Scientific, 869, Aug.1990, Thessaloniki, Greece Google Scholar
13. Eversteyn, F.C. and Put, B.H., J.Electrochem.Soc. 120, 106(1973)CrossRefGoogle Scholar
14. Blazejowski, J. and Lampe, F.W., J. Photochem., 20, 9(1982)CrossRefGoogle Scholar
15. , Meyerson and Olbricht, W., J.Electrochem. Soc. 132, 448(1985)CrossRefGoogle Scholar
16. Jiang, Ruolian, Liu, Nianlin, Zheng, Youdou, Zheng, Guozhen, Wei, Yayi, Shen, Xuechu, Chinese Physics Letter, 11(2), 116(1994)CrossRefGoogle Scholar
17. Jiang, Ruolian, Liu, Nianlin, Zheng, Youdou, Zheng, Guozhen, Wei, Yayi, Shen, Xuechu, Submitted to J. Appl. Phys.Google Scholar