Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T07:32:26.010Z Has data issue: false hasContentIssue false

Growth and Characterization of Poly-SiGe Prepared by Reactive Thermal CVD

Published online by Cambridge University Press:  21 March 2011

Jianjun Zhang
Affiliation:
Imaging Science and Engineering Laboratory, Tokyo Institute of Technology 4259 Nagatsuta Midori-ku Yokohama, 226-8503 Japan Institute of Photoelectronic Thin Film Device and Technology, Nankai University, Tianjin 300071, China
Kousaku Shimizu
Affiliation:
Imaging Science and Engineering Laboratory, Tokyo Institute of Technology 4259 Nagatsuta Midori-ku Yokohama, 226-8503 Japan
Jun-ichi Hanna
Affiliation:
Imaging Science and Engineering Laboratory, Tokyo Institute of Technology 4259 Nagatsuta Midori-ku Yokohama, 226-8503 Japan
Get access

Abstract

We have prepared poly-Si1-xGex thin films with different germanium contents (Ge=5%∼40%) by reactive thermal CVD. In this study, the Ge content was controlled by varying the source gases GeF4 flow rate at a fixed Si2H6 flow rate. The effects of GeF4 flow rate on growth rate, film crystallinity, and electrical properties were investigated. The films were always polycrystalline when GeF4 was introduced even in a small amount, while only amorphous film deposited without GeF4. With an increase in GeF4 flow rate, Ge content and conductivity of the films increased and its activation energy decreased. When GeF4 flow rate over a certain value, the growth rate decrease and finally no film could be deposited. These behaviors are discussed in relation with a role of GeF4 for the crystal growth at a low temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sameshima, T., and Usui, S., Appl. Phys. Lett. 59, 2724 (1991).Google Scholar
2. Fork, D. K., Anderson, G. B., Boyce, J. B., Johnson, R. I., and Mei, P., Appl. Phys. Lett. 68, 2138 (1996).Google Scholar
3. Asano, T., Aoto, K., and Okada, Y., Jpn. J. Appl. Phys., 36, 1415 (1997).Google Scholar
4. Jang, J., Oh, J. Y., Kim, S. K., Choi, Y. J., Yoon, S. Y., and Kim, C. O., Nature 395, 481 (1998).Google Scholar
5. Kohno, N., Nagahara, T., fujimoto, K., Kakinoki, Y., and Kakinoki, H., Mater. Res. Soc. Proc., 283, 629 (1993).Google Scholar
6. Nagahara, T., Fujimoto, K., Kohno, N., Kashiwagi, Y., and Kakinoki, H., Jpn. J. Appl. Phys. 31, 629 (1992).Google Scholar
7. Hanna, J., Mater. Res. Soc. Symp. Proc. 37, 105 (1995).Google Scholar
8. Shiota, K., Inoue, D., Minami, K., and Hanna, J., J. Non-Cryst. Solids 227–230, 1074 (1998).Google Scholar
9. Zhang, J.J., Shimizu, K., and Hanna, J., J. Non-Cryst. Solids 299–302, 163 (2002).Google Scholar
10. Zhang, J.J., Shimizu, K., and Hanna, J., J. Non-Cryst. Solids, (2004) in press.Google Scholar
11. King, T-J., McVittie, J.P., Saraswat, K.C., and Pfiester, J.R., IEEE Trans. Electron Dev. 41, 228 (1994).Google Scholar
12. Lin, H.C., Lin, H.Y., Chang, C.Y., Lei, T.F., Wang, P.J., and Chao, C.Y., Appl. Phys. Lett. 63, 1351 (1993).Google Scholar
13. Lin, H.C., Chang, C.Y., Chen, W.H., Tsai, W.C., Chang, T.C., Jung, T.G., and Lin, H.Y., J. Electrochem Soc. 141, 2559 (1994).Google Scholar