Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:31:54.551Z Has data issue: false hasContentIssue false

Grain Engineering Approaches for High-Performance Polysilicon Thin-Film Transistor Fabrication

Published online by Cambridge University Press:  10 February 2011

G. K. Giust
Affiliation:
Memory Technology & Integration, LSI Logic, Santa Clara, CA 95404, [email protected]
T. W. Sigmon
Affiliation:
Advanced Process and Development Group, Lawrence Livermore National Laboratory, Livermore, CA 94551
Get access

Abstract

Using an approach we call “grain engineering,” we discuss several techniques to control grain growth during excimer laser annealing, to create low-defect density polysilicon films. By adjusting of laser parameters, for example, we obtain polysilicon films with grain sizes of more than 9 µm, without substrate heating. These high-quality films are used in the fabrication of low-temperature unhydrogenated polysilicon thin-film transistors (TFT's) yielding mobilities of > 260 cm2/Vs and on/off current ratios > 107. We investigate the laser recrystallization of “prepatterned” films as another technique of grain engineering. We find the performance of TFT's fabricated in active areas that are prepatterned before laser recrystallization is dramatically improved compared to those TFT's fabricated from the laser recrystallization of blanket polysilicon films. A novel “recessed” structure is also examined as a new grain engineering tool. By depositing a blanket silicon film on a patterned oxide layer on a heat sink, the heat flow through the continuous silicon film may be controlled during laser recrystallization to simultaneously produce adjacent regions of remarkably different grain microstructure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ng, K. K., Celler, G. K., Povilonis, E. I., Frye, R. C., Leamy, H. J., and Sze, S. M., IEEE Elec. Dev. Lett. EDL–2, p. 316 (1981).Google Scholar
2. Hatalis, M. K., and Greve, D. W., J. Appl. Phys. 63, p. 2260 (1988).Google Scholar
3. Panwar, O. S., Moore, R. A., Mitchell, N. S. J., Gamble, H. S., and Armstrong, B. M, Appl. Surf. Sci. 36, p. 247 (1989).Google Scholar
4. Mei, P., Boyce, J. B., Hack, M., Lujan, R., Ready, S. E., Fork, D. K., Johnson, R. I., and Anderson, G. B., J. Appl. Phys. 76, p. 3194 (1994).Google Scholar
5. Sera, K., Okumura, F., Uchida, H., Itoh, S., Kaneko, S., and Hotta, K., IEEE Trans. Elec. Dev. 26, p. 2868 (1989).Google Scholar
6. Brotherton, S. D., McCulloch, D. J., Clegg, J. B., and Gowers, J. P., IEEE Trans. Elec. Dev. 40, p. 407 (1993).Google Scholar
7. Giust, G. K., and Sigmon, T. W., Appl. Phys. Lett. 70, pp. 767769 (1997).Google Scholar
8. Giust, G. K., and Sigmon, T. W., IEEE Trans. Electron Dev. 45, pp. 925932 (1998).Google Scholar
9. Giust, G. K., and Sigmon, T. W., IEEE Electron Dev. Lett. 18, pp. 394396 (1997).Google Scholar
10. Carey, P. G., Bezjian, K., Sigmon, T. W., Gildea, P., and Magee, T. J., IEEE Elec. Dev. Lett. EDL–7, p. 440 (1986).Google Scholar
11. Weiner, K. H., Carey, P. G., McCarthy, A. M., and Sigmon, T. W., Microelectron. Eng. 20, p. 107 (1993).Google Scholar
12. Im, J. S., and Kim, H. J., Appl. Phys. Lett. 63, pp. 19691971 (1993).Google Scholar
13. Cao, M., Talwar, S., Dramer, K. J., Sigmon, T. W., and Saraswat, K. C., IEEE Trans. Electron Devices 43, pp. 561567 (1996).Google Scholar
14. Kuriyama, H., Nohda, T., Aya, Y., Kuwahara, T., Wakisaka, K., Kiyama, S., and Tsuda, S., Jpn. J. Appl. Phys. 33, pp. 56575662 (1994).Google Scholar
15. Giust, G. K., and Sigmon, T. W., J. Appl. Phys. 81, pp. 12041211 (1997).Google Scholar
16. Giust, G. K., and Sigmon, T. W., IEEE Electron Dev. Lett. 18, pp. 296298 (1997).Google Scholar
17. Giust, G. K., and Sigmon, T. W., J. Electronic Materials 26, pp. L13–L16 (1997).Google Scholar
18. Giust, G. K., and Sigmon, T. W., Appl. Phys. Lett. 70, pp. 35523554 (1997).Google Scholar