Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T18:13:26.936Z Has data issue: false hasContentIssue false

Gold Langmuir-Blodgett deposited nanoparticles for non-volatile memories

Published online by Cambridge University Press:  01 February 2011

S. Kolliopoulou
Affiliation:
Institute of Microelectronics, NCSR Demokritos, 153 10 Aghia Paraskevi, Greece
D. Tsoukalas
Affiliation:
National Technical University of Athens, 15780 Zografou, Greece
P. Dimitrakis
Affiliation:
Institute of Microelectronics, NCSR Demokritos, 153 10 Aghia Paraskevi, Greece
P. Normand
Affiliation:
Institute of Microelectronics, NCSR Demokritos, 153 10 Aghia Paraskevi, Greece
S. Paul
Affiliation:
Centre for Molecular and Nanoscale Electronics, University of Durham, Durham DH1 3LE, UK
C. Pearson
Affiliation:
Centre for Molecular and Nanoscale Electronics, University of Durham, Durham DH1 3LE, UK
A. Molloy
Affiliation:
Centre for Molecular and Nanoscale Electronics, University of Durham, Durham DH1 3LE, UK
M. C. Petty
Affiliation:
Centre for Molecular and Nanoscale Electronics, University of Durham, Durham DH1 3LE, UK
Get access

Abstract

In this work, we demonstrate a MISFET memory device that incorporates a monolayer of Langmuir-Blodgett (LB) deposited gold nanoparticles as floating gate charge storage elements. The FET device is fabricated on a SOI substrate using conventional silicon processing. The nanoparticle layer is separated from the channel area of the FET with a 5 nm thermal SiO2 layer and is isolated from Al gate contact with a LB-deposited organic insulator layer. The memory effect is tested using voltage pulses on the gate of the device and monitored through drain current measurements. The nanocrystals can be charged either from the channel through the thermal oxide layer by applying pulses smaller than 5 V or from the gate through the organic insulator for higher voltage depending on the pulse duration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hanafi, H.I., Tiwari, S. and Khan, I., IEEE Trans.Electron Dev. 43, 1553, (1996)Google Scholar
[2] Kapetanakis, E., Normand, P., Tsoukalas, D., Beltsios, K., Stoemenos, J., Zhang, S., J. van den Berg, Appl. Phys. Lett. 77, 3450 (2000)Google Scholar
[3] King, Y.-C., King, T.-J., Hu, C., IEEE Trans. Electron. Dev. 48, 696 (2001)Google Scholar
[4] Liu, J., Lee, T., Janes, D.B., Walsh, B.L., Melloch, M.R., Woodall, J.M., Reifenberger, R., Andres, R.P., Appl. Phys. Lett. 77, 373 (2000)Google Scholar
[5] Sato, T., Ahmed, H., Appl. Phys. Lett. 70 2759 (1997)Google Scholar
[6] Paul, S., Pearson, C., Molloy, A., Cousins, M. A., Green, M., Kolliopoulou, S., Dimitrakis, P., Normand, P., Tsoukalas, D. and Petty, M. C., Nano Letters, 3(4), (2003), 533536.Google Scholar
[7] Evans, N.J., Petty, M.C. and Roberts, G.G., Thin Solid Films, 160, (1988), 177 Google Scholar
[8] Nechev, G., Hibino, M., Hatta, I., Colloids and Surfaces A, 166, (2000), 16 Google Scholar
[9] Kolliopoulou, S., Dimitrakis, P., Normand, P., Zhang, H. L., Cant, N., Evans, S. D., Paul, S., Pearson, C., Molloy, A., Petty, M. C. and Tsoukalas, D., J. Appl. Phys., 94(8), (2003), 52345239 Google Scholar
[10] Nabok, A. V., Iwantono, B., Hassan, A. K., Ray, A. K., Wilkop, T., Material Science and Engineering C, 22, (2002), 355.Google Scholar