Published online by Cambridge University Press: 15 February 2013
Traditional assembly line manufacturing is speculative, costly and environmentally unsustainable. It is speculative because it commits substantial resources—energy, materials, shipping, handling, stocking and displaying—without a guaranteed sale. It is costly because each of these resources—material, process, people and place—involves expense not encountered when a product is manufactured at the time of sale. It is environmentally unsustainable because, no matter how much recycling is done, not using the resources unless actually needed is always a better path. Three-dimensional printing is currently of great commercial interest as it can be employed to manufacture parts on-demand economically and without the significant cost & environmental downsides, i.e. inventory and waste, associated with traditional manufacturing processes. Herein, we describe the formulation of a novel water-based material which can be used in a traditional 3D printer extrusion process to create optically transparent glass-based objects. Such objects have a wide range of applications including, but not wholly limited to: security printing using color & coating effects, protective films and coatings, electronic codes readable by smartphones, tablets or touch screens. Additional all glass objects traditionally manufactured by the so called kiln glass method can be generated by this type of 3D printing making it interesting for the high end market of art objects.