Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:37:18.505Z Has data issue: false hasContentIssue false

Giant Magnetoresistance and Structural Study of Permalloy/Silver Multilayers During Rapid Thermal Annealing

Published online by Cambridge University Press:  22 February 2011

F. Roozeboom
Affiliation:
Philips Research, Professor Holstlaan 4, NL-5656 AA Eindhoven, The Netherlands
I. Gideonse
Affiliation:
University of Groningen, The Netherlands
J.P.W.B. Duchateau
Affiliation:
Philips Research, Professor Holstlaan 4, NL-5656 AA Eindhoven, The Netherlands
D.G. Neerinck
Affiliation:
Philips Research, Professor Holstlaan 4, NL-5656 AA Eindhoven, The Netherlands
H.T. Munsters
Affiliation:
Philips Research, Professor Holstlaan 4, NL-5656 AA Eindhoven, The Netherlands
Get access

Abstract

The Giant Magnetoresistance effect with high field-sensitivity was recently discovered in multilayers of alternating ferromagnetic and non-ferromagnetic layers. Some of these layer structures may find industrial application in miniaturized sensor and high-density digital magnetic recording technologies which require materials with large changes in electrical resistance at low magnetic fields.

In this paper we report on Rapid Thermal Annealing experiments done on a series of multilayers of alternating thin permalloy (Ni80Fe20) and silver films. The layers were sputter deposited on thermally oxidized Si (100) substrates. Samples were annealed in nitrogen at temperatures ranging from 280 to 340 °C for 30 seconds to 10 minutes, yielding magnetoresistance data as high as 5% and a maximum field sensitivity of 4.6% per kA.m-1. X-Ray diffraction analysis, showing the gradual formation of an Ag (111) shoulder peak at 20 = 38.3° upon annealing, supports a recently published hypothesis that the appearance of the GMR effect is annealinduced by a change of the microstructure due to diffusion, causing notching and disruption of the permalloy layers in the superlattice.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baibich, M.N., Broto, J.M., Fert, A., Dau, F. Nguyen Van, Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J., Phys. Rev. Lett. 61, 2472 (1988).Google Scholar
2. Binasch, G., Grunberg, P., Saurenbach, F., Zinn, W., Phys. Rev. B 39, 2304 (1990).Google Scholar
3. Dieny, B., Speriosu, V.S., Parkin, S.S.P., Gurney, B.A., Wilhoit, D.R., Mauri, D., Phys. Rev. B43, 1297 (1991).Google Scholar
4. Dieny, B., Speriosu, V.S., Metin, S., Parkin, S.S.P., Gurney, B.A., Baumgart, P., Wilhoit, D.R., J. Appl. Phys. 69, 4774 (1991).Google Scholar
5. Berkowitz, A.E., Mitchell, J.R., Carey, M.J., Young, A.P., Zhang, S., Spada, F.E., Parker, F.T., Hutten, A., Thomas, G., Phys. Rev. Lett. 68, 3745 (1992).CrossRefGoogle Scholar
6. Xiao, J.L., Jiang, J.S., Chien, C.L., Phys. Rev. Lett. 68, 3749 (1992).Google Scholar
7. Bian, X., Zaluska, A., Altounian, Z., Ström-Olsen, J.O., Huai, Y., Cochrane, R.W., Mat. Res. Soc. Symp. Proc. 313, 405 (1993).Google Scholar
8. Parker, M.A., Coffey, K.R., Hylton, T.L., Howard, J.K., Mat. Res. Soc. Symp. Proc. 313, 85 (1993).Google Scholar
9. Dieny, B., Teixera, S.R., Rodmacq, B., Cowache, C., Auffret, S., Redon, O., Pierre, J., J. Magn. Magn. Mat. 130, 197 (1994).Google Scholar
10. Daughton, J.M., Chen, Y.J., IEEE Trans. Magnetics 29, 2705 (1993).Google Scholar
11. Coehoorn, R. in 1995 McGraw-Hill Yearbook of Science and Technology; supplement of the Encyclopedia of Science and Technology (McGraw-Hill, New York), in press.Google Scholar
12. Parkin, S.S.P., Li, Z.G., Smith, D.J., Appl. Phys. Lett. 58, 2710 (1991).Google Scholar
13. Hylton, T.L., Coffey, K.R., Parker, M.A., Howard, J.K., Science 261, 1021 (1993).Google Scholar
14. Mouchot, J., Gerard, P., Rodmacq, B., IEEE Trans. Magnetics 29, 2732 (1993).Google Scholar
15. Massalski, T.B., Binary alloy phase diagrams, Second edition, Volume 1 (ASM International, Materials Park, Ohio) 1990.Google Scholar
16. Kools, J.C.S., Coehoorn, R., Duchateau, J.P.W.B., Rijks, T.G.S.M., Gideonse, I., Proc. Int. Symp. Trends and Applications in Thin Films, Dresden, Germany, March 7-11, 1994; in press at Phys. Stat. Solidi.Google Scholar
17. Pool, R., Science 261, 984 (1993).Google Scholar
18. Parker, M.A., Hylton, T.L., Coffey, K.R., Howard, J.K., Mat. Res. Soc. Symp. Proc. 343 (1994) in press, (paper H5.6, MRS Spring'94 meeting, April 6, 1994).Google Scholar
19. Slonczewski, J.C., J. Magn. Magn. Mater. 129, L123 (1994).Google Scholar
20. Dulac, O., Proc. First Int. Conf. on Rapid Thermal Processing, Sept. 8-10, 1993, RTP'93, Scottsdale, Arizona, p. 318.Google Scholar
21. Bernards, J.P.C., Rev. Sci. Instrum. 64, 1918 (1993).Google Scholar
22. SUPerlattice REfinement from X-rays: a computer program from the Catholic University of Leuven, Belgium. See Fullerton, E.E., Schuller, I.K., Vanderstraeten, H., Bruynseraede, Y., Schuller, I.K., Phys. Rev. B 45 (1992) 9292.Google Scholar
23. Kitada, M., J. Magn. Magn. Mater. 123, L18 (1993).Google Scholar