Published online by Cambridge University Press: 17 February 2014
The paper reports on the growth of group III-Sb’s on silicon, substrate preparation, optimization of AlGaSb metamorphic buffer, formation of defects (threading dislocations, microtwins and anti-phase boundaries) and their effect on the surface morphology and electrical properties of these high hole mobility materials for future III-V CMOS technology. Defect density was found to be 2-3x higher than in similar structures grown on GaAs, resulting in 2x higher roughness. Defects also result in background p-type doping well above 1017 cm-3 causing inversion of polarity from n-type to p-type in thin n-type doped GaSb. MOS Capacitors fabricated on these buffers demonstrate similar characteristics to higher quality GaSb-on-GaAs. The highest hole mobility obtained in a strained InGaSb QW MOS channel grown on silicon is ∼630 cm2/V-s which is ∼30% lower than similar channels grown on GaAs substrates.