Published online by Cambridge University Press: 01 February 2011
We have fabricated and characterized ferroelectric-gate TFTs using In-Ga-Zn-O (IGZO) or In2O3 as a channel material. The ferroelectric gate insulator used in this work is (Bi,La)4Ti3O12 (BLT). We observed normal n-channel transistor operation for both IGZO and In2O3-channel TFTs. However, a charge injection type hysteresis was observed for IGZO channel TFTs in drain current – gate voltage (ID-VG) characteristics. Post fabrication anneal at 300oC reduced the charge-injection-tyoe hystereesis and the subthreshold swing was also improved from 0.27 to 0.19 V/decade. On the other hand, when the In2O3 was used as a channel, hysteresis due to the ferroelectric gate insulator was clearly observed in ID-VG characteristics. A memory window of 2V, a subthreshold voltage swing of 0.35V/decade, a field-effect mobility of 1.6 cm2/Vs, and a on/off drain current ratio of more than 10^6 were obtained.