Article contents
Fabrication of Air-Gaps Between Cu Interconnects for Low Intralevel k.
Published online by Cambridge University Press: 17 March 2011
Abstract
We present here a method for fabrication of air-gaps between Cu-interconnects to achieve low intralevel dielectric constant, using a sacrificial polymer as a ‘place holder’. IC compatible metallization and CMP processes were used in a single damascene process. The air-gap occupies the entire intralevel volume between the copper lines with fully densified SiO2 as the planer interlevel dielectric. The width of the air-gaps was 286 nm and the width of the copper lines was 650 nm. The effective intralevel dielectric constant was calculated to be 2.19. The thickness of the interlevel SiO2 and copper lines were 1100 nm and 700 nm, respectively. Further reduction in the value of intralevel dielectric constant is possible by optimization of the geometry of the metal/air-gap structure, and by use of a low k interlevel dielectric material.
In this method of forming air-gaps, the layer of sacrificial polymer was spin-coated onto the substrate and formed into the desired pattern using an oxide or metal mask and reactive-ion-etching. The intralevel Cu trench is then inlaid using a damascene process. After the CMP of copper, interlevel SiO2 is deposited by plasma-CVD. Finally, the polymer place-holder is thermally decomposed with the decomposition products permeating through the interlevel dielectric material. The major advantages of this method over other reported methods of formation of air-gaps are excellent control over the geometry of the air-gaps; no protrusion of air-gaps into the interlevel dielectric; no deposition of SiO2 over the side-walls, and no degradation of the interlevel dielectric during the formation of air-gap.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2000
References
- 2
- Cited by