Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T18:06:34.270Z Has data issue: false hasContentIssue false

Experimental Study of Self-Diffusion in Silicon Using Isotopically Enriched Structures

Published online by Cambridge University Press:  10 February 2011

Ant Ural
Affiliation:
Dept. of Electrical Eng., Stanford University, Stanford, CA 94305, [email protected]
Peter B. Griffin
Affiliation:
Dept. of Electrical Eng., Stanford University, Stanford, CA 94305
James D. Plummer
Affiliation:
Dept. of Electrical Eng., Stanford University, Stanford, CA 94305
Get access

Abstract

Self-diffusion in silicon has been studied using epitaxially grown isotopically enriched structures under nonequilibrium concentrations of intrinsic point defects created by thermal oxidation and nitridation. Comparison of identical anneals for self, antimony, and phosphorus diffusion in silicon enables us to determine bounds on the fractional contributions of microscopic mechanisms for Si self-diffusion in the temperature range 800–1100°C. We obtain direct experimental evidence for a dual vacancy-interstitial mechanism of self-diffusion in silicon and show that the fractional contribution of each mechanism has a weak dependence on temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nichols, C. S., Walle, C. G. Van de, and Pantelides, S. T., Phys. Rev. Lett. 62, 1049 (1989); Phys. Rev. B 40, 5484 (1989).Google Scholar
2. Fahey, P. M., Griffin, P. B., and Plummer, J. D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
3. Ural, Ant, Griffin, Peter B., and Plummer, James D., J. Appl. Phys. 85, 6440 (1999).Google Scholar
4. Blochl, P. E., Smargiassi, E., Car, R., Laks, D. B., Andreoni, W., and Pantelides, S. T., Phys. Rev. Lett. 70, 2435 (1993).Google Scholar
5. Tang, M., Colombo, L., Zhu, J., and Rubia, T. Diaz de la, Phys. Rev. B 55, 14279 (1997).Google Scholar
6. Pandey, K. C., Phys. Rev. Lett. 57, 2287 (1986); A. Antonelli, S. Ismail-Beigi, E. Kaxiras, K. C. Pandey, Phys. Rev. B 53, 1310 (1996).Google Scholar
7. Frank, W., Gosele, U., Mehrer, H., Seeger, A., in Diffusion in Crystalline Solids, edited by Murch, G. E. and Nowick, A. S. (Academic, New York, 1984), p. 63.Google Scholar
8. Tan, T. Y. and Gosele, U., Appl. Phys. A 37, 1 (1985).Google Scholar
9. Bracht, H., Stolwijk, N. A., and Mehrer, H., Phys. Rev. B 52, 16 542 (1995).Google Scholar
10. Bracht, H., and Haller, E. E., Clark-Phelps, R., Phys. Rev. Lett. 81, 393 (1998).Google Scholar
11. Ural, A., Griffin, P. B., and Plummer, J. D., Appl. Phys. Lett. 73, 1706 (1998).Google Scholar
12. Fair, R. B., in Impurity Doping Processes in Silicon, edited by Wang, F. F. Y. (North-Holland, Amsterdam, The Netherlands, 1981), p. 315.Google Scholar
13. Fourer, R., Gay, D. M., Kernighan, B. W., AMPL: A Modeling Language For Mathematical Programming (Boyd & Fraser, Massachusetts, 1993).Google Scholar