Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-13T18:25:44.617Z Has data issue: false hasContentIssue false

Evaluation of Lpcvd Boron Nitride as a Low Dielectric Constant Material

Published online by Cambridge University Press:  15 February 2011

R. A. Levy
Affiliation:
New Jersey Institute of Technology, University Heights, Newark, NJ 07102
M. Narayan
Affiliation:
New Jersey Institute of Technology, University Heights, Newark, NJ 07102
M. Z. Karim
Affiliation:
Sharp Microelectronics Technology, Camas, WA 98607
S. T. Hsu
Affiliation:
Sharp Microelectronics Technology, Camas, WA 98607
Get access

Abstract

This study characterizes low pressure chemically vapor deposited B-N-C-H as a low dielectric constant material for interlevel dielectric applications. These films are synthesized over a temperature range of 400 to 600 °C and various flow rate ratios using triethylamine borane complex (TEAB) and NH3 as precursors. The dielectric constant of these films exhibit values which varied in the range of 2.6 to 3.5 depending on processing conditions. Low dielectric constant values are achieved at film compositions which approached stoichiometry and have minimal carbon content. The variations in the structural, optical, mechanical, and chemical properties of these films as a function of deposition conditions are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Maeda, M. and Makino, T., Jpn. J. Appl. Phys., 26, 660 (1987).Google Scholar
2. Hyder, S. B. and Yep, T. O., J. Electrochem. Soc., 123, 1721 (1976).Google Scholar
3. Schmolla, W. and Hartnagel, H. L., J. Electrochem. Soc., 123, 1721 (1976).Google Scholar
4. Miyamoto, H., Hirose, M., and Osaka, Y., Jpn. J. Appl. Phys., 22, L216 (1983).Google Scholar
5. Montasser, K., Hatori, S. and Morita, S. Plasma Chem., Plasma Process., 4, 251 (1984); J. Appl. Phys., 58, 3185 (1985).Google Scholar
6. Yuzuriha, I., Hess, D. and Mylnko, W., J. Vac. Sci. Technol., A3, 2125 (1985); Thin Solid Films, 140, 199 (1986).Google Scholar
7. Maeda, M., Makino, T., Yamamoto, E. and Konaka, S., IEEE Trans. Electron Devices, 36, 1610 (1989).Google Scholar
8. Usami, T., Shimokawa, K. and Yoshimaru, M., J. Appl. Phys., 33, 408 (1994).Google Scholar
9. Hatanaka, M., Mizushima, Y., Hataishi, O. and Furumura, Y., Proc. VLSI Multilevel Interconnection Conf., p. 435 (1991).Google Scholar
10. Chin, B. L. and Van de Ven, E. P., Solid State Technol., 31,119 (1988).Google Scholar
11. Yu, D., Favreau, D., Martin, E. and Manocha, A., Proc. VLSI Multilevel Interconnection Conf., p. 166 (1990).Google Scholar
12. Mizuno, S., Verma, A., Lee, P. and Nguyen, B., Int. Conf. On Metallurgical Coatings and Thin Films Abstract (1995).Google Scholar
13. Rich, D. C., Cebe, P. and St.Clair, A.K., Mat. Res. Soc. Symp. Proc. 323, 301 (1994).Google Scholar
14. Negi, Y., Suzuki, Y., Kawamura, I., Hagiwara, T., Takahashi, Y., Ijima, M., Imai, Y. and Kakimoto, M., J. Polym. Sci. A 30, 2281 (1992).Google Scholar
15. Murarka, S. P., Solid State Technol.,3, 83 (1996).Google Scholar
16. Hrubesh, L. W., Mater. Res. Symp. Proc. 381, 267 (1995).Google Scholar
17. Labadie, J. W., Hedrick, J. L., Wakharkar, V., Hofer, D. S., Russell, T. P., IEEE Trans. Compon. Hybrids Manuf. Technol. 15, 925 (1992).Google Scholar
18. Maeda, M., Jpn. J. Appl. Phys., 29, 1789 (1990).Google Scholar
19. Nguyen, S. V., Nguyen, A., Treichel, H. and Spindler, O., J. Electrochem. Soc., 141, 1635 (1994).Google Scholar
20. Laxman, R. K., Semicond. Int., 5, 71 (1995).Google Scholar
21. St.Clair, A. K., St.Clair, T. L. and Winfree, W. P., ACS Polym. Mat. Sci. Eng., 59, 28 (1988).Google Scholar
22. Reuter, R., Franke, H. and Feger, C., Appl. Opt., 27, 4565 (1988).Google Scholar
23. Misra, A., Tesoro, G. and Hougham, G., Polymer, 33, 1078 (1992).Google Scholar
24. Matsuura, T., Ishizawa, M., Hasuada, Y. and Nishi, S., Macromol., 25, 3540 (1992).Google Scholar
25. Kern, W. in Microelectronic Materials and Processes edited by Levy, R. A.,, Kluwer Academic Publishers, Dordrecht, The Netherlands, p. 213 (1989).Google Scholar
26. Levy, R. A., Mastromatteo, E., Grow, J.M., Paturi, V. and Kuo, W.P., J. Mater. Res., 10, 320 (1995).Google Scholar
27. Adams, A. C. and Capio, C. D., J. Electrochem. Soc., 127, 399 (1980).Google Scholar
28. Levy, R. A., Resnick, D. J., Frye, R. C., Yanof, A. W., Wells, G. M. and Cerina, F., J. Vac. Sci. Technol., B 6, 154 (1988).Google Scholar
29. Takahashi, T., Itoh, H. and Takeichi, A., J. Crystal Growth, 47, 245 (1979).Google Scholar
30. Tauc, J., J. Non-Cryst. Solids, 8–10, 569 (1972).Google Scholar
31. Wiggins, M. D. and Aita, C.R., J. Vac. Sci. Technol. A2, 322 (1984).Google Scholar
32. Sano, M. and Aoki, H., Thin Solid Films, 83, 247 (1981).Google Scholar
33. Motojima, M., Tamura, Y., and Sugiyama, K., Thin Solid Films, 83, 247 (1981).Google Scholar
34. Matsuda, T., Uno, N., Matsunami, Y., Nakae, H. and Hirai, T., Proc. 5th European Conf. Chemical Vapor Deposition, Uppsala University, Uppsala, p. 420 (1985).Google Scholar