No CrossRef data available.
Published online by Cambridge University Press: 21 March 2011
Despite the fast-paced new developments and improvements of applications incorporating conjugated organic materials, rather little effort is made to obtain well-defined structures and thin films of these in order to exploit the highly anisotropic properties (e.g. conductivity, polarized light emission) of most conjugated organic materials. It has been shown that oligomers, which can easily be evaporated under ultrahigh vacuum conditions, exhibit heteroepitaxial growth on various substrates. Depending on the nature of the interaction of the organic molecules with the substrate different orientations can be obtained, as well as by simply changing the conditions of evaporation. Therefore, by going from amorphous or polycrystalline structures to highly textured or single crystalline ones new insights into the physical properties of the materials can be expected, and also new applications. We studied the formation of well-defined films of the electroluminescent oligomer p -sexiphenyl on various metal and semiconductor surfaces and determined the orientation of the molecules by means of low energy electron diffraction (LEED), infrared reflection absorption spectroscopy (IRRAS) and atomic force microscopy (AFM). Depending on the substrate material we found that the molecules are oriented either parallel or perpendicular to the substrate surface. In addition to that, highly oriented 6P films were doped with potassium, and the change in the molecular vibrational signature was investigated with IR-RAS.