Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T18:37:09.603Z Has data issue: false hasContentIssue false

Enzymatic Solutions to Enhance Bonding, Bleaching and Contaminant Removal,

Published online by Cambridge University Press:  15 February 2011

Thomas W. Jeffries
Affiliation:
Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI
Rajesh N. Patel
Affiliation:
Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI
Marguerite S. Sykes
Affiliation:
Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI
John Klungness
Affiliation:
Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI
Get access

Abstract

Microbial enzymes can enhance the properties of virgin pulps and secondary fibers. Enzymes added to pulp slurries at key steps during fiber processing alter structure and composition of native substrates in specific ways. Lipases hydrolyze fatty acid esters thereby facilitating depitching and deinking. Cellulases remove fines and change surface properties, thereby enhancing drainage, deinking, and contaminant removal of secondary fibers. The binding domains of cellulases exfoliate or roughen the surface of cellulose fibers. This feature may be used to enhance inter-fiber bonding. Xylanases and ligninases enhance lignin and chromophore removal thereby facilitating bleaching of kraft pulps. Microbial xylanases reduce chemical demand for bleaching by 35 to 50% in softwood and hardwood pulps, respectively. Many extracellular microbial enzymes are stable at 50 to 60°C and between pH 4 and 7, and some function well at greater extremes. In some instances crude enzymes can be used, but by cloning and expressing pure enzymes at high titers more precise and economical applications can be achieved.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pommier, J.-C., Fuentes, J.-L., and Goma, G., TAPPI 72 187 (1989).Google Scholar
2 Fuentes, J.L. and Robert, M., European Patent No. 262040 (1988).Google Scholar
3 Karsila, S., Kruss, I., Puuppo, O., European Patent No. 351655 A 900124 9004 (1990).Google Scholar
4 Diehm, R.A., US Patent No. 2,289,307 (1942).Google Scholar
5 Bolaski, W., Gallatin, A., and Gallatin, J.C., U.S. Patent No. 3,041,246 (1959).Google Scholar
6 Yerkes, W.D., U S Patent No, 3,406,089 (1968).Google Scholar
7 Nomura, Y., Japanese Patent application 126,395/85 (1985).Google Scholar
8 Din, N., Gilkes, N.K., Tekant, B., Miller, R.C., Warren, R.A.J. and Kilburn, D.G., Bio/technology 9, 1096 (1991).Google Scholar
9 Ghai, S.K., Indian J. Exp. Biol. 18 703 (1980).Google Scholar
10 Griffin, H., Dintzis, F.R., Krull, L., and Baker, F.L.. Biotechnol. Bioeng. 26 296 (1984).Google Scholar
11 Oji Paper. Japanese Patent No. JP 2080683 (1990).Google Scholar
12 Kim, Tee Jin and Ow, S.S.-K., UK Patent Appl. Publication No. GB 2231 595 A (21 November, 1990).Google Scholar
13 Lion. Japanese Patent No. JP 2080684 (1990).Google Scholar
14 Sharyo, M. and Sakaguchi, H., Japanese Patent No. JP 02160984 (1990).Google Scholar
15 Viikari, L., Rauna, M, Kantelinen, A., Sundquist, J., and Linko, M. in Proc. 3rd Int. Conf. Biotechnol. Pulp Paper Indus., Stockholm, 1986 pp. 6769.Google Scholar
16 Viikari, L.,, Kantelinen, A.,, Linko, M., Sundquist, J., and Ranua, M., in Proc. 4th Int. Symp. Wood and Pulping Chem., Paris 1987 Vol.1, pp. 151154.Google Scholar
17 Viikari, L., Knatelinen, A., Poutanen, K., and Ranua, M. in Biotechnology in Pulp and Paper Manufacture edited by Kirk, T.K. and Chang, H.-M. (Butterworth-Heinemann, Boston, 1990) p. 145.Google Scholar
18 Clark, T.A., McDonald, A.G., Senior, D.J., and Mayers, P.R. in Biotechnology in Pulp and Papr Manufacture edited by Kirk, T.K. and Chang, H.-M. (Butterworth-Heinemann, Boston, 1990) p. 153.Google Scholar
19 Paice, M.G., Bernier, R. Jr., and Jurasek, L.. Biotechnol. Bioengineer. 32 235 (1988).CrossRefGoogle Scholar
20 Senior, D.J., Mayers, P.R., Breuil, C., and Sadler, J.N. in Biotechnology in Pulp and Paper Manufacture edited by Kirk, T.K. and Chang, H.-M. (Butterworth-Heinemann, Boston, 1990) p. 169 Google Scholar
21 Puls, J., Poutanen, K., and Lin, J.J. in Biotechnology in Pulp and Paper Manufacture edited by Kirk, T.K. and Chang, H.-M. (Butterworth-Heinemann, Boston, 1990) p. 183 CrossRefGoogle Scholar
22 Salkinoja-Salonen, M., Vaheri, M., and Koljonen, M., Int. Pub. No. WO 89/08738 (1989).Google Scholar
23 Farrell, R.L., Eur. Patent Appl. Pub. No. 0 373 107 (1989).Google Scholar
24 Vartak, H.G., and Bastawde, K.B., Eur Pat. App. Pub. No. EP 0 353 342 (1988).Google Scholar
25 Olsen, W.L., Burris, K.A., Bhattacharjee, S.S., Slocomb, J.P., and DeWitt, D.M., Eur. Pat. App. No. 90111620.2, Pub. No. 0 406 617 A2 (1990).Google Scholar
26 Kruus, I., Laine, J., and Koljonen, M., PCT int. Pub. No. WO 91/02840 (1990).Google Scholar
27 Kruss, I., and Koljonen, M., PCT Int Pub. No. WO 91/02791 (1991).Google Scholar
28 Manoir, J.R. Du, and Dubelsten, P., Eur. Pat App. Pub No. 0 386 888 A2 (1990).Google Scholar
29 Pedersen, L.S., Skjoldjoer, S., Anker, L., Austin, H.E., PCT Int. Pub. No. WO 91/02839 (1989).Google Scholar
30 Vaheri, Marija, Jokela, V., and Miikki, K., Eur. Pat. App. Pub No. EP 0383 999 (1989).Google Scholar
31 Manoir, J.R. Du, and Dubelsten, P., Eur. Pat App. Pub No. 0 386 888 A2 (1990).Google Scholar
32 Vaheri, Marija, Suominen, M, Ruohoniemi, K., and Osterman, N.. PCT Int. Appl. WO 115627 Al (17 Oct 1991).Google Scholar
33 Farrell, R.L. U.S. Patent No. 4,690,895 (1987).Google Scholar
34 Farrell, R.L. U.S. Patent No. 4,687,745 (1987).Google Scholar
35 Olsen, W.L., Slocomb, J.P., Gallagher, H.P., and Kathleen, B.A., Eur. Pat. App. No. 89110176.8; Publication No. 0345 715 Al (1989).Google Scholar
36 Vaheri, M., and Kiikki, K., Eur. Patent. App. Pub. No. 0 408 803 Al (1989).Google Scholar
37 Gysin, B., and Griessmann, T., Eur. Patent. App. Pub. No. 0418 201 A2 (1989).Google Scholar
38 Farrell, R.L., Gelep, P., Anillonis, A., Javaherian, K., Malone, T.E., Rusche, J.R., Sadownick, B.A. and Jackson, J.A., Eur. Patent App. No. 87810516.2 Publication No. 0 216 080 (1987).Google Scholar
39 Olsen, W.L., Burris, K.A., Bhattacharjee, S.S., Slocomb, J.P., and DeWitt, D.M., Eur. Pat. App. No. 90111620.2, Pub. No. 0 406 617 A2 (1990).Google Scholar
40 Viikari, L., Ranua, M., Kantelinen, A., Linko, M., and Lundquist, J., in Fourth Int. Symp. Wood Pulp. Chem. Paris, 1987 pp. 151154.Google Scholar
41 Kantelinen, A., Rättö, M., Sundquist, J., Ranua, M., Viikari, L., and Linko, M., TAPPI Internat. Pulp Bleaching Conf. Orlando, 1988 pp. 19 Google Scholar
42 Chauvet, J.-M., Comtat, J., and Noe, P., 4th Int. Symp. Wood Pulping Chem. Paris, 1987. Poster Presentations, Vol 2, pp. 325327.Google Scholar
43 Jurasek, L., and Paice, M.G., TAPPI Internat. Pulp Bleach. Conf. Orlando, 1988 pp. 1113 Google Scholar
44 Paice, M.G., Bernier, R., and Jurasek, L.,. CPPA Ann. Mtg. Montreal, 1988 preprints 74A pp. 133136.Google Scholar
45 Viikari, L., Kantelinen, A., Poutanen, K. and Ranua, M. in Biotechnology in Pulp and Papr Manufacture edited by Kirk, T.K. and Chang, H.-M. (Butterworth-Heinemann, Boston, 1990). pp. 145–143.Google Scholar
46 Clark, T.A., McDonald, A.G., Senior, D.J., and Mayers, P.R.. 1990. in Biotechnology in Pulp and Paper Manufacture edited by Kirk, T.K. and Chang, H.-M. (Butterworth-Heinemann, Boston, 1990)pp.153167.Google Scholar
47 Jeffries, T.W., Biodegradation 1 163 1990.Google Scholar
48 Chauvet, J.-M., Comtat, J., and Noe, P., 4th Int. Symp. Wood Pulping Chem. Paris, 1987 Poster Presentations, Vol 2 pp. 325327.Google Scholar
49 Jurasek, L., and Paice, M.G., TAPPI Internat. Pulp Bleach. Conf. Orlando, 1988 pp. 1113 Google Scholar
50 Paice, M.G., Bernier, R., and Jurasek, L.,. Biotechnol. Bioeng. 32, 235 (1988).Google Scholar
51 Paice, M.G., Bernier, R., and Jurasek, L., CPPA Ann. Mtg. Montreal 1988, preprints 74A pp. 133136 Google Scholar