Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:54:43.805Z Has data issue: false hasContentIssue false

Enhancement Mode GaN MOSFETs on Silicon Substrates with High Field-effect Mobility

Published online by Cambridge University Press:  01 February 2011

Hiroshi Kambayashi
Affiliation:
[email protected], The Furukawa Electric Co.,LTD.,, Yokohama R&D laboratories, 2-4-3, Okano, Nishi-ku, Yokohama, 220-0073, Japan, +81-45-311-1218, +81-45-316-6374
Yuki Niiyama
Affiliation:
[email protected], The Furukawa Electric Co., LTD.,, Yokohama, 220-0073, Japan
Shinya Ootomo
Affiliation:
[email protected], The Furukawa Electric Co., LTD.,, Yokohama, 220-0073, Japan
Takehiko Nomura
Affiliation:
[email protected], The Furukawa Electric Co., LTD.,, Yokohama,, 220-0073, Japan
Masayuki Iwami
Affiliation:
[email protected], The Furukawa Electric Co., LTD.,, Yokohama, 220-0073, Japan
Yoshihiro Satoh
Affiliation:
[email protected], The Furukawa Electric Co., LTD.,, Yokohama, 220-0073, Japan
Sadahiro Kato
Affiliation:
[email protected], The Furukawa Electric Co., LTD.,, Yokohama, 220-0073, Japan
Seikoh Yoshida
Affiliation:
[email protected], The Furukawa Electric Co., LTD.,, Yokohama, 220-0073, Japan
Get access

Abstract

In this report, we have demonstrated enhancement-mode n-channel GaN MOSFETs on silicon (111) substrates. We observe a high field-effect mobility of 115 cm2/Vs, the best report for GaN MOSFET fabricated on a silicon substrate to our knowledge. The threshold voltage was estimated to be +2.7 V, and the maximum operation current was over 3.5 A. This value is the largest which have ever been reports.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chow, T.P. and Tyagi, R. IEEE Trans. Electron Devices, Vol.41, 1481 (1994).Google Scholar
2. Saito, W. Tanaka, Y. Kuraguchi, M. Tsuda, K. and Ohmura, I. IEEE Trans. Electron Devices, Vol.53, 356 (2006).Google Scholar
3. Jia, S. Cai, Y. Wang, D. Zhang, B. Lau, K. M. and Chen, K. J. IEEE Trans. Electron Devices, Vol. 53, 1474 (2006).Google Scholar
4. Umemoto, Y. Hikita, M. Ueno, H. Matsuo, H. Ishida, H. Yanagihara, M. Ueda, T. Tanaka, T. and Ueda, D. IEDM Technical Digest, 2006.Google Scholar
5. Motocha, K. and Chow, T. P. Gutmann, R. J. IEEE Trans. Electron Devices, Vol.52, no. 1, 6 (2005).Google Scholar
6. Huang, W. Khan, T. and Chow, T. P. IEEE Electron Device Lett., Vol.27, no. 10, 796 (2006).Google Scholar
7. Otake, H. Egami, S. Ohta, H. Nanashi, Y. and Takasu, H. Jpn J. Appl. Phys. Lett., Vol.46, L599 (2007).Google Scholar
8. Nomura, T. Kambayashi, H. Niiyama, Y. Otomo, S. and Yoshida, S. Solid-State Electronics, 52 150 (2008).Google Scholar
9. Niiyama, Y. Kambayashi, H. Ootomo, S. Nomura, T. Yoshida, S. and Chow, T. Paul, Jpn J. Appl. Phys. Lett., submitted.Google Scholar
10. Otake, H. Chikamatsu, K. Yamaguchi, A. Fjishima, T. and Ohta, H. Appl. Phys. Expr., 1, 011105–1 (2008).Google Scholar
11. Kodama, M. Sugimotol, M., Hayashi, E. Soejima, N. Ishiguro, O. Kanechika, M. Itoh, K. Ueda, H. Uesugi, T. and Kachi, T. Appl. Phys. Expr., 1, 021104–1, (2008).Google Scholar
12. Kambayashi, H. Niiyama, Y. Ootomo, S. Nomura, T. Iwami, M. Satoh, Y. Kato, S. and Yoshida, S. IEEE Electron Device Lett., Vol.28, no. 12, 1077, (2007).Google Scholar