Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T16:24:47.375Z Has data issue: false hasContentIssue false

Engineered Nanostructured Coatings for Enhanced Protein Adsorption and Cell Growth

Published online by Cambridge University Press:  27 February 2012

Fereydoon Namavar
Affiliation:
Department of Orthopaedic Surgery and Rehabilitation, UNMC, Omaha, NE 68198, U.S.A.
Alexander Rubinstein
Affiliation:
Department of Physics, University of Nebraska, Omaha, NE 68182, U.S.A.
Renat F. Sabirianov
Affiliation:
Department of Physics, University of Nebraska, Omaha, NE 68182, U.S.A.
Geoffrey M. Thiele
Affiliation:
Department of Internal Medicine Rheumatology, UNMC, Omaha, NE 68198, U.S.A.
J. Graham Sharp
Affiliation:
Department of Genetics, Cell Biology and Anatomy, UNMC, Omaha, NE 68198, U.S.A.
Utsav Pokharel
Affiliation:
Department of Orthopaedic Surgery and Rehabilitation, UNMC, Omaha, NE 68198, U.S.A.
Roxanna M. Namavar
Affiliation:
Department of Orthopaedic Surgery and Rehabilitation, UNMC, Omaha, NE 68198, U.S.A.
Kevin L. Garvin
Affiliation:
Department of Orthopaedic Surgery and Rehabilitation, UNMC, Omaha, NE 68198, U.S.A.
Get access

Abstract

We designed and produced pure cubic zirconia (ZrO2) ceramic1 coatings by an ion beam assisted deposition (IBAD) with nanostructures comparable to the size of proteins. Our ceramic coatings exhibit high hardness and a zero contact angle with serum. In contrast to hydroxyapatite (HA), nano-engineered zirconia films possess excellent adhesion to all orthopaedic materials. Cell adhesion and proliferation experiments were performed with a bona fide mesenchymal stromal cell line (OMA-AD). Our experimental results indicate that the nano-engineered cubic zirconia is superior in supporting growth, adhesion, and proliferation. Since cell attachment is mediated by adhesive proteins such as fibronectin (FN), to elucidate why cells attach more effectively to our nanostructures, we performed a comparative analysis of adsorption energies of FN fragment using quantum mechanical calculations and Monte Carlo (MC) simulation both on smooth and nanostructured surfaces. We have found that a FN fragment adsorbs significantly stronger on the nanostructured surface than on the smooth surface2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Namavar, F., Cheung, C.L., Sabirianov, R.F., et al. , Nano Lett. 8(4), 988996 (2008).CrossRefGoogle Scholar
2. Sabirianov, R. F., Rubinstein, A., Namavar, F., Phys. Chem. Chem. Phys. 13(14), 6597 (2011).10.1039/c0cp02389bCrossRefGoogle Scholar
3. Namavar, F., et al. , in Surface-Reactive Biomaterials as Scaffolds and Coatings, edited by Ravaglioli, A. and Krajewski, A., (Italian) National Research Council (CNR) 2009, pp. 3443.Google Scholar
4. Mustafa, K., et al. , Clin Oral Implants Res. 9(3), 195207 (1998).CrossRefGoogle Scholar
5. Wilson, C.J., Clegg, R.E., Leavesley, D.I. and Pearcy, M.J., Tissue Engin. 11(1-2), 118 (2005).CrossRefGoogle Scholar
6. Dolatshahi-Pirouz, A., Jensen, T., Kraft, D.C., et al. , ACS Nano, 4, 28742882 (2010).CrossRefGoogle Scholar
7. Hemmersam, A.G., Rechendorff, K., Foss, M., et al. , J.Colloid Interface Sci. 320, 110-116 (2008).CrossRefGoogle Scholar
8. Chen, C.S., Alonso, J.L., Ostuni, E., et al. , Biochem. Biophys. Res. Commun. 307, 355361 (2003).CrossRefGoogle Scholar
9. Singh, P., Carraher, C., Schwartzbauer, J.E., Annu Rev Cell Div Biol. 26, 397419 (2010).CrossRefGoogle Scholar
10. Namavar, F., Wang, G., Cheung, C.L., et al. , J. Nanotechnology 18, 415702 (2007).CrossRefGoogle Scholar
11. Jackson, J.D., Sharp, J.G., et al. , In Ceramics, Cells and Tissues: materials for scaffolding of biologically engineered systems. Interfaces and interactions on a nanoscale, edited by Ravaglioli, A. and Krajewski, A., ISTEC-CNR, 2006, pp. 109118.Google Scholar
12. Dexter, T.M., Coutinho, L.H., Spooncer, E., et al. , Ciba Found Symp. 148, 7695 (1990).Google Scholar
13. Klarmann, K., Ortiz, M., Davies, M., Keller, J.R.. Blood 102, 31203128 (2003).CrossRefGoogle Scholar
14. Pirruccello, S.J., Jackson, J.D., Sharp, J.G.. Leuk Lymphoma 13 169178 (1994).CrossRefGoogle Scholar
15. Sharma, A., Askari, J.A., Humphries, M.J., et al. , EMBO J. 18, 14681479 (1999).CrossRefGoogle Scholar
16. Sachchidanand, L.O., Staunton, D., Mulloy, B., et al. , J. Biol. Chem. 277, 5062950635 (2002).CrossRefGoogle Scholar
17. MacKerell, A.D. Jr., Bashford, D., Bellott, R.L., et al. , J. Phys. Chem. B 102(18), 3586 (1998).CrossRefGoogle Scholar
18. Ahmed, S. A., Gogal, J. R. M. and Walsh, J.E., J. Immunol. Methods 170(2), P211- (1994).CrossRefGoogle Scholar
19. Invitrogen, U.S. Patent No. 5,501,959 alamarBlue® Assay (26 March 1996) http://tools.invitrogen.com/content/sfs/manuals/PI-DAL1025-1100_TI%20alamarBlue%20Rev%201.1.pdf Google Scholar
20. Grinnell, F., Int. Rev. Cytol. 53, 65 (1978).CrossRefGoogle Scholar
21. Ertel, S.I., Ratner, B.D., Kaul, A., et al. , J. Biomed. Mater. Res. 28, 667 (1994).10.1002/jbm.820280603CrossRefGoogle Scholar
22. Dusad, A., Chakkalakal, D., Namavar, F., et al. , Orthopaedic Research Society Feb 4-7, 2012, San Francisco, CA.Google Scholar
23. Leach, A.R., Molecular modeling, principles and applications. (Addison Wesley Longman Limited, UK, 1996).Google Scholar
24. Scotchford, C.A., Gilmore, C.P., Cooper, E., et al. , Biomed. Mater. Res. 59, 84 (2002).CrossRefGoogle Scholar
25. Kubiak-Ossowska, K., Mulheran, P.A., Langmuir 26, 76907694 (2010).CrossRefGoogle Scholar
26. Raut, V.P., Agashe, M.A., Stuart, S.J., Latour, R.A., Langmuir 21, 16291639 (2005).CrossRefGoogle Scholar