Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-29T18:14:35.181Z Has data issue: false hasContentIssue false

Electro-optic Mach-Zehnder modulators with polycrystalline BaTiO3 thin films on MgO

Published online by Cambridge University Press:  11 February 2011

A. Petraru
Affiliation:
Institut für Schichten und Grenzflächen, ISG1-IT, Forschungszentrum Jülich, D-52425 Jülich, Germany
J. Schubert
Affiliation:
Institut für Schichten und Grenzflächen, ISG1-IT, Forschungszentrum Jülich, D-52425 Jülich, Germany
M. Schmid
Affiliation:
Institut für Schichten und Grenzflächen, ISG1-IT, Forschungszentrum Jülich, D-52425 Jülich, Germany
O. Trithaveesak
Affiliation:
Institut für Schichten und Grenzflächen, ISG1-IT, Forschungszentrum Jülich, D-52425 Jülich, Germany
Ch. Buchal
Affiliation:
Institut für Schichten und Grenzflächen, ISG1-IT, Forschungszentrum Jülich, D-52425 Jülich, Germany
Get access

Abstract

The optical and electro-optical properties of epitaxially grown thin films of ferroelectric BaTiO3 on MgO substrates have been established and high quality Mach-Zehnder waveguide modulators have been demonstrated. As a next step towards the integration of ferroelectric thin films on different substrates, we have modified the growth conditions by lowering the growth temperature to study polycrystalline, but still highly transparent BaTiO3 (BTO) films. Polycrystalline BTO on MgO substrates has been grown by pulsed laser deposition (PLD). The growth temperature was reduced from 800 °C to 400 °C at an oxygen pressure of 2×10-3 mbar. Although polycrystalline, the BTO is still birefringent with no= 2.32 and ne = 2.30. Ridge waveguides have been formed by ion beam etching. The estimated waveguide propagation loss is 4 dB/cm at 633 nm. Electro-optic Mach-Zehnder modulators have been realized. Using 3 mm long electrodes with a spacing of 10 μm, a Vπ voltage of 14 V was obtained at 633 nm wavelength. This is half of the observed effective electro-optic coefficient measured at epitaxial BTO films. At 1.5 μm wavelength similar results were observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Zgonik, M., Bernasconi, P., Duelli, M., Schlesser, R., and Günter, P., Phys. Rev. B 50, 5941 (1994)Google Scholar
[2] Petraru, A., Schubert, J., Schmid, M. and Ch. Buchal, Appl. Phys. Lett. 81, 1375 (2002)Google Scholar
[3] Robins, L. H., Kaiser, D. L., Rotter, L. D., Schenck, P. K., Stauf, G. T., and Rytz, D., J. Appl. Phys. 76, 7487 (1994)Google Scholar
[4] Cullity, B.B., “Elements of X-Ray Diffractionsecond Edition, Addison-Wesley Series in Metallurgy and Materials, Addison-Wesley Publishing Company Inc., (1978)Google Scholar
[5] Beckers, L., Schubert, J., Zander, W., Ziesmann, J., Eckau, A., Leinenbach, P., Buchal, Ch., J. Appl. Phys. 83, 3305 (1998)Google Scholar
[6] Ulrich, R. and Torge, R., Appl. Phys. Lett. 12, 2901 (1973)Google Scholar
[7] Gill, D. M., Block, B. A., Conrad, C. V., Wessels, B. W., and Ho, S. T., Appl. Phys. Lett. 69, 2968 (1996)Google Scholar