Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:50:02.147Z Has data issue: false hasContentIssue false

Electronic Structure and Transport in Non Periodic Systems: New O(N) Methods

Published online by Cambridge University Press:  10 February 2011

D. Mayou
Affiliation:
LEPES-CNRS, B.p. 166, F-38042 Grenoble Cedex 9, France
P. E. A. Turchi
Affiliation:
LLNL (L-268), PO Box 808, Livermore CA 94551
S. Roche
Affiliation:
Dept of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan
J. P. Julien
Affiliation:
Université Française du Pacifique, Papeete, Tahiti.
Get access

Abstract

The mathematical theory of orthogonal polynomials and continued fractions provides efficient tools, via the recursion and related methods, for calculating diagonal elements of Green's function of tight-binding Hamiltonians. We present two recent generalizations of this formalism. The first one allows the calculation of conductivity and other linear response coefficients. The second one provides a new approach to the solution of mean-field theories of alloys. In particular it is shown that the self-consistent CPA equations can be easily solved, through a real-space calculation, for multi-component alloys based on periodic or non periodic lattices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Haydock, R., in Solid State Physics, edited by Seitz, F., Turnbull, D., and Ehrenreich, H. (Academic Press, New York, 1980), Vol 35.Google Scholar
2. Mayou, D., Europhys. Lett. 6, 549 (1988);Google Scholar
Mayou, D. and Khanna, S., J. Phys. I (France) 5, 1199 (1995).Google Scholar
3. Roche, S. and Mayou, D., Phys. Rev. Lett. 79, 2518 (1997).Google Scholar
4. Bose, S. K., in these proceedings.Google Scholar
5. Goedecker, S. and Colombo, L., Phys. Rev. Lett. 73, 122 (1994).Google Scholar
6. Mayou, D., Thesis Université Joseph Fourier Grenoble (1987), unpublished.Google Scholar
7. Julien, J. P. and Mayou, D., J. Phys. I (France) 3, 1861 (1993).Google Scholar
8. Turchi, P. E. A., Mayou, D., and Julien, J. P., Phys. Rev. B 56, 1726 (1997).Google Scholar
9. Burke, N. R., Surf. Sci. 58, 349 (1976).Google Scholar
10. Girardi, R., Turchi, P. E. A., and Mayou, D., to be published.Google Scholar