Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:24:58.461Z Has data issue: false hasContentIssue false

Electronic Deep Levels in Laser – Crystallized Silicon Thin-Film MOS Capacitors on Fused Silica

Published online by Cambridge University Press:  21 February 2011

N. M. Johnson
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
M. D. Moyer
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
Get access

Abstract

Residual electronic deep levels in fully – processed, cw laser – crystallized silicon thin films on fused silica were measured by transient capacitance spectroscopy, supplemented with capacitance – voltage techniques. The test devices were metal – oxide – silicon thin – film capacitors with p – type conductivity. The hole emission spectra are dominated by a continuous distribution of deep levels in the lower half of the silicon band gap which are associated with the Si – SiO2 interface; the spectra also display the effects of surface generation. The interface – state density near midgap is estimated to be 6×1010 eV−1 cm−2, and there are no detectable bulk deep levels with densities > 1×1014 cm−3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Johnson, N. M., Biegelsen, D. K., Tuan, H. C., Moyer, M. D., and Fennell, L. E., IEEE Electron Device Lett. EDL-3, 369 (1982).Google Scholar
2. Chiang, A., Zarzycki, M. H., Meuli, W. P., and Johnson, N. M. in: Energy Beam – Solid Interactions and Transient Thermal Processing, Fan, J. C. C. and Johnson, N. M., eds. (Elsevier, New York, 1984) in press.Google Scholar
3. Chiang, A., Zarzycki, M. H., Meuli, W. P., and Johnson, N. M., these proceedings.Google Scholar
4. Johnson, N. M., Moyer, M. D., and Fennell, L. E., Appl. Phys. Lett. 41, 560 (1982).Google Scholar
5. Johnson, N. M., Moyer, M. D., Fennell, L. E., Maby, E. W., and Atwater, H. in: Laser-Solid Interactions and Transient Thermal Processing of Materials, Narayan, J., Brown, W. L., and Lemons, R. A., eds. (Elsevier, New York, 1983) pp. 491497.Google Scholar
6. Fennell, L. E., Moyer, M. D., Biegelsen, D. K., Chiang, A., and Johnson, N. M. in: Energy Beam – Solid Interactions and Transient Thermal Processing, Fan, J. C. C. and Johnson, N. M., eds. (Elsevier, New York, 1984) in press.Google Scholar
7. Nicollian, E. H. and Brews, J. R., MOS Physics and Technology (Wiley, New York, 1982) chaps. 8 and 14.Google Scholar
8. Sze, S. M., Physics of Semiconductor Devices, 2nd Ed. (Wiley, New York, 1981) chap. 7.Google Scholar
9. Johnson, N. M., J. Vac. Sci. Technol. 21, 303 (1982).Google Scholar
10. Lang, D. V., J. Appl. Phys. 45, 3014 (1974); 45, 3023 (1974).Google Scholar
11. Milnes, A. G., Deep Impurities in Semiconductors (Wiley, New York, 1973) chap. 5.Google Scholar
12. Makram–Ebeid, S. in: Defects in Semiconductors, Narayan, J. and Tan, T. Y., eds. (Elsevier, New York, 1981) pp. 495501.Google Scholar