Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T08:12:44.320Z Has data issue: false hasContentIssue false

Electromigration Induced Drift and Noise in a Single Aluminum Via

Published online by Cambridge University Press:  15 February 2011

G. B. ALERS
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
A. S. OATES
Affiliation:
AT&T Bell Laboratories, 9333 S. John Young Pkwy., Orlando, Fl 32819
N.L. BEVERLY
Affiliation:
Department is Physics, Stevens Institute of Technology, Hoboken, NJ 07030
Get access

Abstract

We have examined small changes in the resistance of a single aluminum via test structure with a resolution of 10-8 ohms. The via is roughly one cubic micron and contains a well defined TiN diffusion barrier. The high resolution of these resistance measurements allows the observation of atomic drift rates corresponding to roughly 100 atoms/second into and out of the well defined via structure. Resistance changes are observed with moderate current densities in the temperature range of 100°C to 200°C. We observe reversible increases and decreases in the resistance caused by the accumulation of atoms at the diffusion barrier within the via. Comparisons can be made to recent models for the transient electromigration induced vacancy drift. We are able to extract microscopic electromigration parameters as well as differentiate between copper and aluminum as the initial diffusing element.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lloyd, J. R. and Koch, R. H., Appl. Phys. Lett. 52, 194 (1988).Google Scholar
2 Kraayeveld, J. R., Verbruggen, A. H. and Radelaar, S., Mat. Res. Soc. Symp. Proc. Vol. 309. (1993).Google Scholar
3 Gian Luigi Baldini and Andrea Scorzoni, IEEE Trans. on Elec. Dev. 38, 469 (1991). and refer-ences therein.Google Scholar
4 Mockl, U. E., Lloyd, J. R. and Arzt, E., Mat. Res. Soc. Symp. Proc. Vol. 309. (1993).Google Scholar
5 Oates, A. S., Nikansah, F., and Chittipeddi, S., J. Appl. Phys. 72, 2227 (1992).Google Scholar
6 Oates, A. S., J. Appl. Phys. 70, 5369 (1991).Google Scholar
7 Koch, R. H., Lloyd, J. R. and Cronin, J., Phys. Rev. Lett. 55, 2487 (1985); Roger H. Koch, Phys. Rev. B, 48, 12217 (1993).Google Scholar
8 Weissman, M. B., Rev. Mod. Phys. 60, 537 (1988).Google Scholar
9 Shatzkes, M. and Lloyd, J. R., J. Appl. Phys. 59, 3890 (1986).Google Scholar
10 Lloyd, J. R. and Kitchin, J., J. Mater. Res. 9, 563 (1994).Google Scholar
11 Kircheim, R. and Kaeber, U., J. Appl. Phys. 70, 172 (1991).Google Scholar
12 Kirchheim, R., Acta Metal. Mater. 40, 309 (1992).Google Scholar
13 Alers, G. B., Oates, A. S. and Beverly, N. L. (to be published).Google Scholar
14 Paul, Rossiter, L., in The electrical resistivity of metals and alloys (Cambridge Univ. Press, Cambridge, 1987), p. 228.Google Scholar
15 Siegel, R. W., J. Nuc. Mat. 69 & 70, 117 (1978).Google Scholar