Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T18:02:24.010Z Has data issue: false hasContentIssue false

Effects of Facet Growth and Nucleation on Microcrystalline Silicon by Numerical Model

Published online by Cambridge University Press:  21 March 2011

Yasuyuki Kobayashi
Affiliation:
Advanced Technology Research Center, Mitsubishi Heavy Industries, Ltd. 1-8-1, Sachiura, Kanazawa-ku, Yokohama 236-8515, Japan.
Koji Satake
Affiliation:
Advanced Technology Research Center, Mitsubishi Heavy Industries, Ltd. 1-8-1, Sachiura, Kanazawa-ku, Yokohama 236-8515, Japan.
Get access

Abstract

We have presented a model of microcrystalline silicon (μc-Si) growth based on the Van der Drift model. The model needs growth velocities of the facets (100) and (111), an amorphous silicon growth velocity and a grain nucleation rate. The growth velocity ratio of the facets, (100) and (111), determines the preferred orientation and the morphology of the μc-Si film, especially oriented to (110). As the grain nucleation rate increases, the ratio of the living grain number to the total grain number decreases and the crystallinity increases, so the grain nucleation rate governs the trade-off relation of the μc-Si cells between decreasing the open circuit voltage and increasing the short circuit current as the crystallinity increases.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kocka, J., Stuchlíková, H., Stuchlík, J., Rezek, B., Mates, T., Ŝvrcek, V., Fojtík, P., Pelant, I., and Fejfar, A., J. Non-Cryst. Sol. 299–302, 355 (2002); J. Bailat, E. Vallat-Sauvain, L. Feitknecht, C. Droz and A. Shah, J. Non-Cryst. Sol. 299-302, 1219 (2002); F. Finger, S. Klein, T. Dylla, A.L. Baia Neto, O. Vetterl and R. Carius, Mat. Res. Soc. Symp. Proc. 715, 123 (2002).Google Scholar
2. Levine, S. W. and Clancy, P., Modelling Simul. Mater. Sci. Eng. 8, 751 (2000); J. Bailat, E. Vallat-Sauvain, A.Bailat, and A. Shah, in Proceedings of the ICAMS 20, Campos do Jordão, Brazil, August 2003 (to be published).Google Scholar
3. Drift, A. van der, Philips Res. Repts. 22, 267 (1967).Google Scholar
4. Wild, C., Koidl, P., Muller-Sebert, W., Walcher, H., Kohl, R., Herres, N., and Locher, R., Diamond and Related Materials 2, 158 (1993).Google Scholar
5. Kobayashi, Y. and Satake, K., Solid State Phenomena 93, 405 (2003).Google Scholar
6. Werner, J. H., Taretto, K., and Rao, U., Solid State Phenomena 80–81, 299 (2001).Google Scholar
7. Ferreira, I., Águas, H., Mendes, L., Fernandes, F., Fortunato, E., Cenimat, R. Martins, Mat. Res. Soc. Symp. Proc. 507, 831 (1998); M. Konagai, “Study of High-Efficiency Narrow Bandgap Si Based Thin Film Solar Cells”, in Tech. Digest of PVTEC-NEDO (Japan, 2001).Google Scholar
8. Werner, J. H., in Tech. Digests of International PVSEC-11, Sapporo, Japan, 1999, p.p. 923.Google Scholar
9. Matsui, T., Tsukiji, M., Saika, H., Toyama, T. and Okamoto, H., J.J. Appl. Phys. 41, 20 (2002).Google Scholar
10. Fujiwara, H., Nasuno, Y., Kondo, M. and Matsuda, A., Solid State Phenomena 93, 99 (2003).Google Scholar
11. Cabarrocas, P. Roca i, Morral, A. Fontcuberta i, Kalache, B. and Kasouit, S., Solid State Phenomena 93, 257 (2003).Google Scholar