Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:35:44.514Z Has data issue: false hasContentIssue false

Effect of Microstructure on the Dissolution Kinetics of Copper Thin Films in Dilute Aqueous Solutions of Cupric Chloride

Published online by Cambridge University Press:  15 February 2011

L. Harper Walsh
Affiliation:
Rome Laboratory, 525 Brooks Road, Griffiss Air Force Base, New York 13441-4505
N. B. Feilchenfeld
Affiliation:
IBM Microelectronics, Endicott, New York
J. A. Schwarz
Affiliation:
Department of Chemical Engineering and Materials Science, Syracuse University, Syracuse, New York 13244
Get access

Abstract

Microstructural differences in copper deposited by four techniques commonly used in the microelectronics industry were previously reported. [1] The reaction rates were predicted using either grain size or grain orientation as the dominant microstructure characteristic. A practical method to monitor copper speciation was developed.[2] This technique was used to measure the reaction rates for the different copper films under two different etching conditions. The results are explained using grain size, grain orientation and near surface region composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Walsh, L. H., Feilchenfeld, N. B., Schwarz, J. A., J. Vac. Sci. Technol. A. 10 (4) Jul/Aug 1992, pp. 1493–96; 1993 Proceedings of the Seventh International IEEE VLSI Multilevel Interconnection Conference, (IEEE Service Center, Piscataway, NJ, June 1993) p.549.Google Scholar
2. Walsh, L. H., Ph.dissertation, D., Syracuse University, 1989 Google Scholar
3. Maissel, L. I. and R. Glang in Handbook of Thin Film Technology, (McGraw-Hill, New York, 1970), Chapters 1 and 2.Google Scholar
4. White, R. T. Jr., Horwath, R. S., and J. Cuomo in Principles of Electronic Packaging, edited, by Seraphim, D. R., Lasky, R., and Li, C. (McGraw-Hill, New York, 1989), pp.394423; P. Bindra, S. L. Levine, W. T. Pimbley, R. F. Schaffer, J. Reid, W. L. Underkofler, and R. T. Galasco, J. Cuomo in Principles of Electronic Packaging, edited, by D. R. Seraphim, R. Lasky, and C. Li (McGraw-Hill, New York, 1989), pp.470–518.Google Scholar
5. O'Sullivan, E. J. M. Horkans, J., White, J. R., and Roldan, J., IBM Res. Devel. 32, 591 (1988); C. A. Kovac, J. L. Jordan-Sweet, M. J. Goldberg, J. G. Clabes, A. Viehbeck, and R. A. Pollak, IBM Res. Devel., 32, 603 (1988); A. L. Ruoff, E. J. Kramer, and C. Li, IBM Res. Devel.., 32, 626 (1988)Google Scholar
6. Mausbach, M., Ehrich, H., Mueller, K. G., Mater. Sci. Eng. A 140, 825 (1991)Google Scholar
7. Masu, K., Huira, Y., Tsubouchi, K., Tadahiro, O., and N. Mikoshiba in 23rd International Conference on Solid State Devices and Materials- SSDM'91, (Business Center for Acad. Soc. Japan, Tokyo, Japan, 1991) pp. 126–12 8.Google Scholar
8. Myers, S. A., 1990 Proceedings of the Seventh International IEEE VLSI Multilevel Interconnection Conference, (IEEE Service Center, Piscataway, NJ, 1990), pp. 335–36.Google Scholar
9. Sternberg, Z., M Stupnisek, Dukic, P. C., Stubicar, M., and O. MIlat, Vacuum 40, 234 (1990).Google Scholar
10. Yang, C. H. and Chen, P. C., Electronic Packaging Materials Science IV, San Diego CA, 24–28 April 1989, pp. 335–42.Google Scholar
11. Park, C. W. and Vook, R. W. in Materials Reliability Issues in Microelectronics, edited by Lloyd, J. R., Yost, F. G., and P. S. Ho (Mater. Res. Soc. Proc. 225, Pittsburgh, PA, 1991) pp. 119124.Google Scholar
12. Johnson, B. C., J. Appl. Phys. 67, 3019 (1990)Google Scholar
13. Hildebrand, J. H. and Powell, R. E., Principles of Chemistry, (Maxmillan Co., NY, 1964), p.265 Google Scholar
14. Baes, C. F. and Mesmer, A., The Hydrolysis of Cations, (Wiley, NY, 1976)Google Scholar
15. Westall, J. C. and Perdue, E. M., MIT, 1986 Google Scholar