Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:35:56.515Z Has data issue: false hasContentIssue false

Drift of Arsenic in SiO2 in a Lamp Furnace With a Built-In Temperature Gradient

Published online by Cambridge University Press:  28 February 2011

G. K. Celler
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
L. E. Trimble
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
K. W. West
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
L. Pfeiffer
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
T. T. Sheng
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

We have found that arsenic implanted into SiO2 segregates at high temperatures in an oxygen-free ambient into spherical, As-rich inclusions of 50 to 500A in diameter. The phase separation prevents diffusion of arsenic, even at temperatures as high as 1400 °C. However, the As-rich inclusions or droplets can be easily moved in a temperature gradient. They migrate towards the heat source at a rate of 2300A /hour in a gradient of 0.14 °C/μm, at 1405 °C, permitting their efficient removal from the oxide and into silicon. We propose a model to explain the dependence of droplet velocity on their size.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wong, J. and Ghezzo, M., J. Electrochem. Soc. 119, 1413 (1972).Google Scholar
[2] Wada, Y. and Antoniadis, D. A., J. Electrochem Soc. 128 1317 (1981).Google Scholar
[3] Singh, R., Maier, M., Krautle, H., Young, D. R., and Balk, P., J. Electrochem. Soc. 131 2645 (1984).Google Scholar
[4] van Ommen, A. H., J. Appl: Phys. 56 2708 (1984).Google Scholar
[5] Celler, G. K., Trimble, L. E., West, K. W., Pfeiffer, L., and Sheng, T. T., Appl. Phys. Lett. 50 664 (1987).Google Scholar
[6] Celler, G. K., CRC Critical Reviews in Solid State and Materials Sciences, 12 193 (1985).Google Scholar
[7] Celler, G. K., Hemment, P. L. F., West, K. W., and Gibson, J. M., Appl. Phys. Lett. 48 532 (1986).Google Scholar
[8] Cline, H. E. and Anthony, T. R., J. Appl. Phys. 48 2196 (1977), and references therein.Google Scholar
[9] Lewerenz, H. J. and Wetzel, H., J. Electrochem. Soc. 130 1228 (1983).Google Scholar
[10] Chen, D. C., Szeto, R. T., and Fu, H.-S., IEDM-1983 Techn. Digest, p.43.Google Scholar
[1l] Goodhew, P. J., Radiat. Eff. 78 381 (1983).Google Scholar
[12] Shewmon, P. G., Trans. Metal. Soc. AIME 230 1134 (1964).Google Scholar