Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T16:13:04.515Z Has data issue: false hasContentIssue false

Dopant Enhanced Low-Temperature Epitaxial Growth by Rapid Thermal Processing Chemical Vapor Deposition

Published online by Cambridge University Press:  22 February 2011

T. Y. Hsieh
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712
K. H. Jung
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712
D. L. Kwong
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712
Get access

Abstract

We have demonstrated, for the first time, that the epitaxial growth temperature can be lowered by dopant incorporation using rapid thermal processing chemical vapor deposition (RTPCVD). Heavily arsenic-doped epitaxial layers with very abrupt dopant transition profiles and relative uniform carrier distribution have been achieved at 800°C. The defect formation is closely related to dopant concentration; the defect density as a function of carrier concentration shows a sharp transition at about 3×1018 cm−3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Meyerson, B. S., Appl. Phys. Lett., 48, 797 (1986).Google Scholar
2 Suzuki, S., Okuda, H., and Itoh, T., Jap. J. Appl. Phys., 19, 647 (1979).CrossRefGoogle Scholar
3 Breaux, L., Anthony, B., Hsu, T., Banerjee, S., and Tasch, A., Appl. Phys. Lett., 55, 1885 (1989).CrossRefGoogle Scholar
4 Sedgwick, T. O., Berkenblit, M., and Kuan, T. S., Appl. Phys. Lett., 54, 2689 (1989).CrossRefGoogle Scholar
5 Lee, S. K., Ku, Y. H., and Kwong, D. L., Appl. Phys. Lett., 54, 1775 (1989).Google Scholar
6 Green, M. L., Brasen, D., Luftman, H., and Kannan, V. C., J. Appl. Phys., 65, 2558 (1989).Google Scholar
7 Gibbons, J. F., Gronet, C. M., and Williams, K. E., Appl. Phys. Lett., 47, 721 (1985).Google Scholar
8 Olson, G. L. and Roth, J. A., Materials science reports, 3, 1 (1988).Google Scholar
9 Jeon, Y. J., Becker, M. F., and Walser, R. M., Mat. Res. Soc. Svmp. Proc. 157, 745 (1990).CrossRefGoogle Scholar
10 Hoyt, J. L., Crabbe, E. F., Pease, R. F. W., Gibbons, J. F., and Marshall, A. F., J. Electrochem. Soc, 135, 1773 (1988).CrossRefGoogle Scholar
11 Robinson, M., Impurity Doping Processes in Silicon, ed. by Wang, F. F. Y., North-Holland Publishing Company: Amsterdam, 261 (1981).Google Scholar
12 Rai-Choudhury, P. and Salkovitz, E. L., J. Cryst. Growth, 7, 361 (1970).Google Scholar
13 Comfort, J. H. and Reif, R., Proceedings of the Tenth International Conference on Chemical Vapor Deposition, PV 87–8 (The Electrochemical Society, Pennington, 1987), p. 265.Google Scholar
14 Meyerson, B. S., LeGoues, F. K., Nguyen, T. N., and Harame, D. L., Appl. Phys. Lett., 50, 113 (1987).CrossRefGoogle Scholar
15 Yamazaki, T., Minakata, H., and Ito, T., J. Electrochem. Soc, 137, 1981 (1990).Google Scholar
16 Suni, I., Goltz, G., Grimaldi, M. G., Nicolet, M-A., and Lau, S. S., Appl. Phys. Lett., 40, 269 (1982).Google Scholar