Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T08:08:22.107Z Has data issue: false hasContentIssue false

Direct Imaging of Ordering in Si-Ge Alloys, Ultrathin Superlattices, and Buried Ge Layers

Published online by Cambridge University Press:  22 February 2011

D. E. Jesson
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
J. -M. Baribeau
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
Get access

Abstract

We review recent Z-contrast imaging studies of Si-Ge ultrathin superlattices, alloys, and buried Ge layers. It is found that whenever Si is deposited onto a Ge (2 × 1) surface, Ge is pumped into the growing Si layer, and this is accompanied by interfacial ordering. This is explained by a novel Ge atom pump mechanism which occurs during MBE growth. Codeposition and alloy growth results in long range (111) ordering as a consequence of lateral segregation during nonequilibrium growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ourmazd, A. and Bean, J. C., Phys. Rev. Lett. 55, 765 (1985).Google Scholar
2. Littlewood, P. B., Phys. Rev. B 38, 1835 (1988).Google Scholar
3. Koiller, B. and Robbins, M. O., Phys. Rev. B 40, 12554 (1989).CrossRefGoogle Scholar
4. LeGoues, F. K., Kesan, V. P., and Iyer, S. S., Phys. Rev. Lett. 64, 40 (1990).CrossRefGoogle Scholar
5. LeGoues, F. K., Kesan, V. P., Iyer, S. S., Tersoff, J., and Tromp, R., Phys. Rev. Lett 64, 2038 (1990).Google Scholar
6. Muller, E., Nissen, H.-U., Ospelt, M., and von Känel, H., Phys. Rev. Lett. 63, 1819 (1989).CrossRefGoogle Scholar
7. Pennycook, S. J. and Jesson, D. E., Phys. Rev. Lett. 64, 938 (1990).Google Scholar
8. Jesson, D. E., Pennycook, S. J., and Baribeau, J. -M., p. 938 in High Resolution Electron Microscopy of Defects in Materials, edited by Sinclair, R., Smith, D. J., and Dahmen, U., Mater. Res. Soc. Proc. 183, Pittsburgh, PA, 1990.Google Scholar
9. Jesson, D. E., Pennycook, S. J., and Baribeau, J.-M., Phys. Rev. Lett. 66, 750 (1991).Google Scholar
10. Jesson, D. E. and Pennycook, S. J., MRS Bulletin 16, No. 3, 34 (1991).Google Scholar
11. Jesson, D. E. and Pennycook, S. J., Scanning 13, Suppl. I, 65 (1991).Google Scholar
12. Kubby, J. A., Griffith, J. E., Becker, R. S., and Vickers, J. S., Phys. Rev. B 36, 6079 (1987).Google Scholar
13. Hamers, R. J., Köhler, U. K., and Demuth, J. E., J. Vac. Sci. Technol. A8, 195 (1990).Google Scholar
14. Chadi, D. J., Phys. Rev. Lett. 59, 1691 (1987).Google Scholar
15. Iyer, S. S., Tsang, J. C., Copel, M., Pukite, P. R., and Tromp, R. M., Appl. Phys. Lett. 54, 219 (1989).Google Scholar
16. See Aebi, P., Tylisczak, T., Hitchcock, A. P., Baribeau, J. -M., and Jackman, T. E., these proceedings.Google Scholar
17. Hoeven, A. J., Van Loenen, E. J., Dijkkamp, D., Lenssinck, J. M., and Dieleman, J., Thin Solid Films 183, 263 (1989).Google Scholar
18. Jesson, D. E., Pennycook, S. J., and Baribeau, J. -M. (to be published).Google Scholar