Article contents
Devices Fabrication with Narrow-Bandgap a-SiGe:H Alloys Deposited by HWCVD
Published online by Cambridge University Press: 21 March 2011
Abstract
We incorporate narrow-gap amorphous silicon germanium (a-SiGe:H) alloys grown by hot-wire chemical vapor deposition (HWCVD) into single-junction n-i-p solar cells, and improve both fill factor (FF) and open-circuit voltage (Voc) by bandgap grading. The Tauc bandgap (ET) of the a-SiGe:H is as low as about 1.25 eV. Previously [1], we obtained a short-circuit current density (Jsc) up to 20 mA/cm2 in an n-i-p device incorporating an ungraded 120-nm i-layer of 1.25-eV a-SiGe:H. However, without buffer layers or bandgap profiling, the fill factor was only 38%, likely due to an abrupt bandgap transition and poor hole collection. To overcome these problems, we have used composition bandgap profiling throughout the i-layer and improved both Voc and FF significantly without any Jsc loss. The solar cell efficiency is improved from 3.55% to 5.85% and Voc rises from 0.475 to 0.550 eV. This improved single-junction a-SiGe:H solar cell has a quantum efficiency of about 48% at l=800 nm and about 15% at l=900 nm. We present details of the bandgap profiling and its effect on device performance.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2004
References
REFERENCES
- 6
- Cited by