Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-21T15:22:22.361Z Has data issue: false hasContentIssue false

Detection of SiH3 radicals and cluster formation in a highly H2 diluted SiH4 VHF plasma by means of time resolved cavity ring down spectroscopy

Published online by Cambridge University Press:  01 February 2011

Takehiko Nagai
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Photovoltaics, Umezono 1-1-1, Tsukuba, Ibaraki, 305-8567, Japan, +81-29-861-3449, +81-29-861-3367
Arno H. M. Smets
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Photovoltaics, Umezono 1-1-1, Tsukuba, Ibaraki, 305-8567, Japan
Michio Kondo
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Photovoltaics, Umezono 1-1-1, Tsukuba, Ibaraki, 305-8567, Japan
Get access

Abstract

The spatial distribution of the SiH3 radicals between the electrodes of a hydrogen diluted silane VHF plasma under thin film hydrogenated microcrystalline silicon (μc-Si:H) growth conditions has been measured using the time resolved cavity ringdown (τ-CRD) absorption spectroscopy technique. The μc-Si:H growth rate is estimated from the measured spatial SiH3 profiles using a simple model based upon diffusion controlled flux of SiH3 radicals to the electrode surface, where the SiH3 can react with the film surface. The calculated value of μc-Si:H growth rate roughly agrees with the value of the experimentally determined growth rate. This agreement implies that the SiH3 radical is the main growth contributor to the μc-Si:H growth. Furthermore, the τ-CRD reveals the growth kinetics of the clusters in the plasma by light scattering at these clusters on time scales of 1 s after the plasma ignition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Roth, R. M., Spears, K. G., and Wong, G., Appl. Phy. Lett. 45, 28 (1984).Google Scholar
2. Takubo, Y., Takasugi, Y., and Yamamoto, M., J. Appl. Phys. 64, 1050 (1988).Google Scholar
3. Matsumi, Y., Hayashi, T., Yoshikawa, H., and Komiya, S., J. Vac. Sci. & Technol. A4, 1786 (1986).Google Scholar
4. Mataras, D., Cavadias, S., and Rapakoulias, D., J. Appl. Phys. 66, 119 (1989).Google Scholar
5. Hoefnagels, J. P. M., Barrell, Y., Kessels, W. M. M., and Sanden, M. C. M. van de, J. Appl. Phys. 96, 4094 (2004).Google Scholar
6. Itabashi, N., Nishiwaki, N., Magane, M., Naito, S., Goto, T., Matsuda, A., Yamada, C., and Hirota, E., Jpn. J. Appl. Phys. 29, L505 (1990).Google Scholar
7. Hoefnagels, J. P. M., Stevens, A. A. E., Boogaarts, M. G. H., Kessels, W. M. M., and Sanden, M. C. M. van de, Chem. Phys. Lett. 360, 189 (2002).Google Scholar
8. Matsuda, A., J. Vac. Sci. Technol. A16(1), 365 (1998).Google Scholar
9. Lightfoot, P. D., Becerra, R., Jemi-Alade, A. A., Lesclaux, R., Chem. Phys. Lett. 180, 441 (1991).Google Scholar
10. Aguas, H., Raniero, L., Pereira, L., Fortunato, E., and Martins, R., Thin Solid Films, 451–452, 264 (2004).Google Scholar
11. Kujundzic, D. and Gallagher, Alan, J. Appl. Phys. 99, 033301–1 (2006).Google Scholar
12.Note, that the drop in Hα within the 3 mm of the powered electrode could reflect H loss due to diffusion to the wall. The Hα emission intensity rapidly decreased within the position of ~2 mm from both electrodes. In order to focus the emission at the center of electrodes, we used the f400 lens with a diameter of 4 cm in this experiments. Therefore, the reduction in the Hα emission intensity within ~2 mm from electrodes is a result of steric hindrance by the electrodes, as well.Google Scholar
13. Itabashi, N., Kato, K., Nishiwaki, N., Goto, T., Yamada, C., and Hirota, E., Jpn. J. Appl. Phys. 28, L325 (1989).Google Scholar
14. Matsuda, A., Nomoto, K., Takeuchi, Y., Suzuki, A., Yuuki, A., and Perrin, J., Surface Science. 227, 50 (1990).Google Scholar
15. Matsuda, A., Matsumura, M., Nakagawa, K., Imura, T., and Yamamoto, H., Mter. Res. Soc. Proc., 164, 3 (1999).Google Scholar