Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T19:55:36.371Z Has data issue: false hasContentIssue false

Design and Fabrication of Dispersion Controlled and Polarization Maintaining Photonic Crystal Fibers for Optical Communications Systems

Published online by Cambridge University Press:  01 February 2011

Satoki Kawanishi
Affiliation:
NTT Network Innovation Laboratories Room 807-A, 1–1 Hikari-no -oka, Yokosuka, Kanagawa, 239–0847, Japan
Takashi Yamamoto
Affiliation:
Mitsubishi Cable Industries, LTD., 4–3 Ikejiri, Itami-City, 664–0027, Japan
Hirokazu Kubota
Affiliation:
NTT Network Innovation Laboratories Room 807-A, 1–1 Hikari-no -oka, Yokosuka, Kanagawa, 239–0847, Japan
Masatoshi Tanaka
Affiliation:
Mitsubishi Cable Industries, LTD., 4–3 Ikejiri, Itami-City, 664–0027, Japan
Syun-ichiro Yamaguchi
Affiliation:
Mitsubishi Cable Industries, LTD., 4–3 Ikejiri, Itami-City, 664–0027, Japan
Get access

Abstract

Recent progress on photonic crystal fibers (PCFs) is reviewed aiming at their application to high performance optical communications sytems. The optical properties, for example dispersion characteristics, can be set by selecting the appropriate combination of air hole diameter and air hole pitch. A noteworthy characteristic of PCFs is their strong birefringence, which suggests optical components with better polarization maintaining characteristics.

This paper describes the characteristics of dispersion controlled PCFs and polarization maintaining PCFs. It describes theoretical analyses and experimental results of fabricated PCFs that have short wavelength zero dispersion at 810 nm, polarization maintaining capability with birefringence of 1 × 10−3, polarization maintaining dispersion flattened functions, and absolute single polarization state support with polarization dependent loss of 1 dB/m at 1550 nm. A supercontinuum generation experiment with PM-PCF in the 1550 nm region is shown with symmetrical spectral broadening to over 40 nm. The potential of PCFs will be discussed with reference to the next generation optical communications systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Knight, J. C., Birks, T. A., St, P., Russel, J., and Atkin, D. M., “All-silica single mode fiber with photonic crystal cladding,” Opt. Lett., vol. 21, pp. 15471549, 1996.Google Scholar
2. Mogilevtsev, D., Birks, T. A., and St, P., Russel, J., “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett., vol. 23, pp. 16621664, 1998.Google Scholar
3. Gardner, M. J., McBride, R., Jones, J. D. C., Mogilevtsev, D., Birks, T. A., Knight, J. C., and St, P., Russel, J., “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett., vol. 35, No. 16, pp. 6364, 1999.Google Scholar
4. Birks, T. A., Mogilevtsev, D., Knight, J. C., and St, P., Russell, J., “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett., vol. 11, pp. 674676, 1999.Google Scholar
5. Ranka, J. K., Windeler, R. S., and Stentz, A. J., “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett., vol. 25, pp. 2527, 2000.Google Scholar
6. Wadsworth, W. J., Knight, J. C., Ortigosa-Blanch, A., Arriaga, J., Silvestre, E., and St, P., Russell, J., “Soliton effects in photonic crystal fibres at 850 nm,” Electron. Lett., vol. 36, No. 1, pp. 5355, 2000.Google Scholar
7. Hansen, K. P., Jensen, J. R., Jacobsen, C., Simonsen, H. R., Broeng, J., Skovgaard, P. M. W., Petersson, A., and Bjarklev, A., “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,” Tech. Digest of Optical Fiber Communication Conference (OFC) 2002, vol. 70, postdeadline paper FA9.Google Scholar
8. Reeves, W., Knight, J., Russell, P., Roberts, P., and Mangan, B., “Dispersion-flattened photonic crystal fibers at 1550 nm,” Tech. Digest of Optical Fiber Communication Conference (OFC) 2003, paper FI3.Google Scholar
9. Hansen, K. P., “Dispersion flattened hybrid-core nonlinear photonic crystal fiber,” Optics Express, vol. 11, pp. 15031509, 2003.Google Scholar
10. Yamamoto, T., Kubota, H., and Kawanishi, S., Tanaka, M. and Yamaguch, S., “Supercontinuum generation at 1.55 μm in a dispersion-flattened polarization-maintaining photonic crystal fiberOptics Express, vol. 11, pp. 15371540, 2003.Google Scholar
11. Birks, T. A., Knight, J. C., and St, P., Russel, J., “Endlessly single-mode photonic crystal fiber,” Opt. Lett., vol. 22, pp. 961963, 1997.Google Scholar
12. Kawanishi, S. and Okamoto, K., ‘Polarization maintaining holey optical fiber’, IEICE Soc. Conf. 2000, Nagoya, B10 (in Japanese).Google Scholar
13. Ortigosa-Blanch, A., Knight, J. C., Wadsworth, W. J., Arriaga, J., Mangan, B. J., Birks, T. A., and St, P., Russell, J., “Highly birefringent photonic crystal fibers,” Opt. Lett., vol. 25, pp. 13251327, 2000.Google Scholar
14. Suzuki, K., Kubota, H., Kawanishi, S., Tanaka, M., and Fujita, M., “High-speed bi-directional polarisation division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarisation-maintaining photonic crystal fibre,” Electron. Lett., vol. 37, No. 23, pp. 13991401, 2001.Google Scholar
15. Tajima, K., Zhou, J., Kurokawa, K., and Nakajima, K., “Low water peak photonic crystal fibers,” Tech. Digest of European Conference on Optical Communication (ECOC) 2003, paper Th4.1.6.Google Scholar
16. Kubota, H., Suzuki, K., Kawanishi, S., Nakazawa, M., Tanaka, M., and Fujita, M., “Low-loss, 2 km-long photonic crystal fiber with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” Tech. Digest of Conference on Lasers and Electro-Optics (CLEO) 2001, Baltimore, paper CPD3.Google Scholar
17. Knight, J. C., Arriaga, J., Birks, T. A., Ortigosa-Blanch, A., Wadsworth, W. J., and St, P., Russell, J., “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 12, pp. 807809, 2000.Google Scholar
18. Koshiba, M. and Tsuji, Y., “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” IEEE J. Lightwave Technol., vol. 18, No. 5, pp. 737743, 2000.Google Scholar
19. Ferrando, A., Silvestre, E., Miret, J. J., Monsoriu, J. A., Andres, M. V., and St, P., Russell, J., “Designing a photonic crystal fibre with flattened chromatic dispersion,” Electron. Lett., vol. 35, pp. 325327, 1999.Google Scholar
20. Monro, T. M., Richardson, D. J., Broderick, N. G. R., and Bennett, P. J., “Holey optical fibers: An efficient modal model,” IEEE J. Lightwave Technol., vol. 17, pp. 10931102, 1999.Google Scholar
21. White, T. P., McPhedran, R. C., “Multiple method for efficient microstructured optical fiber calculations,” Tech. Digest of Conference on Lasers and Electro-Optics (CLEO) 2001, Baltimore, paper JTuC6, pp. 597598.Google Scholar
22. Hosaka, T., Okamoto, K., Miya, T., Sasaki, Y., and Edahiro, T., ‘Low-loss single polarisation fibres with asymmetrical strain birefringence’, Electron. Lett., vol. 17, pp. 530531, 1981.Google Scholar
23. Hansen, T. P., Broeng, J., Libori, S. E. B., Knudsen, E., Bjarklev, A., Jensen, J. R., and Simonsen, H., “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett., vol. 13, pp. 588590, 2001.Google Scholar
24. Payne, D. N., Barlow, A. J., and Hansen, J. J. R., “Development of low- and high-birefringence optical fibers,” IEEE J. Quantum Electron., vol. QE–18, pp. 477488, 1982.Google Scholar
25. Takara, H., Ohara, T., Mori, K., Sato, K., Yamada, E., Inoue, Y., Shibata, T., Abe, M., Morioka, T., and Sato, K-I., “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett., vol. 36, pp. 20892090, 2000.Google Scholar
26. Yusoff, Z., Teh, P., Petropoulos, P., Furusawa, K., Belardi, W., Monro, T., and Richardson, D., “24 channel × 10 GHz spectrally spliced pulse source based on spectral broadening in a highly nonlinear holy fiber,” Tech. Digest of Optical Fiber Communication Conference (OFC) 2003, paper FH3.Google Scholar
27. Petropoulos, P., Monro, T. M., Ebendorff-Heidepriem, H., Framoton, K., Moore, R. C., Rutt, H. N., and Richardson, D. J., “Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber,” Tech. Digest of Optical Fiber Communication Conference (OFC) 2003, postdeadline paper PD3.Google Scholar
28. Kawakami, S. and Nishida, S., “Characteristics of doubly clad optical fiber with a low-index inner cladding”, IEEE J. Quantum Electron., vol. QE–10, No. 12, pp. 879887, 1974.Google Scholar