Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:38:46.011Z Has data issue: false hasContentIssue false

Depth-Selective Investigation of Fe-Silicides Formed After Molecular Beam Epitaxy, Using Conversion Electron MÖSsbauer Spectrometry.

Published online by Cambridge University Press:  25 February 2011

S. Degroote
Affiliation:
Instituut voor Kern- en Stralingsfysika, University ofLeuven, Celestijnenlaan 200D, B-3001 Leuven Research Assistant, NFWO (National Fund for Scientific Research, Belgium)
T. Kobayashi
Affiliation:
Instituut voor Kern- en Stralingsfysika, University ofLeuven, Celestijnenlaan 200D, B-3001 Leuven
J. Dekoster
Affiliation:
Instituut voor Kern- en Stralingsfysika, University ofLeuven, Celestijnenlaan 200D, B-3001 Leuven
A. Vantomme
Affiliation:
Instituut voor Kern- en Stralingsfysika, University ofLeuven, Celestijnenlaan 200D, B-3001 Leuven Postdoctaral Researcher, NFWO (National Fund for Scientific Research, Belgium)
G. Langouche
Affiliation:
Instituut voor Kern- en Stralingsfysika, University ofLeuven, Celestijnenlaan 200D, B-3001 Leuven
Get access

Abstract

Fe-Silicides were formed by annealing MBE-deposited thin Fe layers with a thickness in the range of 24 Å on (7x7) reconstructed Si(l11) substrates. Samples suitable for depth-selective investigations by CEMS (Conversion Electron Mössbauer Spectrometry) were prepared by using only the 57Fe isotope for a few monolayers of the total Fe film, and depositing these selectively right at the interface or separated from it. During the growth the substrate was held at room temperature. The silicide formation upon annealing to temperatures up to 900°C was monitored in situ with RHEED. From the CEMS studies a drastically different sample composition was inferred as a function of monolayer distance from the interface for the as-deposited samples and for annealing temperatures up to 400°C. Analysis of these spectra indicates the presence of metastable and stable iron silicides.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Cherief, N., Cinti, R., De Crescenzi, M., Derrien, J., Nguyen Tan, T. A. and Veuillen, J. Y., Appl. Surface Sci. 41–42, 241(1989)Google Scholar
2 Derrien, J., Chevrier, J., Le Thanh, V. and Mahan, J. E., Appl. Surface Sci. 56–58, 382 (1992)Google Scholar
3 Von Kânel, H., Onda, N., Sirringhaus, H., Millier, E., Goncalves-Conto, S. and Schwarz, C., Appl. Surface Sci. 70, 559(1993)CrossRefGoogle Scholar
4 Derrien, J., Chevrier, J., Le, Thanh Vinh, Bcrbczicr, I., Lagomarsino, S. and Garimaldi, M. G., Appl. Surface Sci. 73, 90 (1993)CrossRefGoogle Scholar
5 Von Känel, H., Kafader, U., Sutter, P., Onda, N., Sirringhaus, H., Müller, E., Kroll, U., Schwarz, C. and Goncalves-Conto, S., Symposium Proceedings MRS Vol 320,1993 Google Scholar
6 Kobayashi, T., Dekoster, J., Degroote, S., Langelaar, M. H., Niesen, L. and Langouche, G., proceedings ICFSI-4, 1993 Google Scholar
7 Degroote, S., Langelaar, M. H., Kobayashi, T., Dekoster, J., De Wachter, J., Moons, R., Niesen, L. and Langouche, G., Symposium Proceedings MRS Vol 320,1993 CrossRefGoogle Scholar
8 Örn, Helgason and Sigfússon, T. I., Hyp. Int. 45, 415 (1989)Google Scholar
9 Wallart, X., Zeng, H. S., Nys, J. P. and Dalmai, G., Appl. Surface Sci. 56–58, 427 (1992)CrossRefGoogle Scholar
10 Steams, M. B., Phys. Rev. 129, 1136 (1963)Google Scholar
11 Urano, T. and Kanaji, T., Appl. Surface Sci. 33–34, 68 (1988)Google Scholar