Published online by Cambridge University Press: 15 February 2011
Preferential crystal orientation of low-resistance C54 TiSi2 formed in the reaction of polycrystalline and single crystal silicon with titanium was investigated for Ti thicknesses ranging from 15 to 44 nm. Using in situ synchrotron x-ray diffraction during heating of 15 nm of Ti on single crystal Si, we observed that the C54 TiSi2 silicide film showed predominantly <040> grains oriented normal to the sample. In thicker silicide films the <311> orientation dominated or film was randomly oriented. An ex situ four circle diffractometer was used to investigate the strong <040> texture in narrow line arrays of C54-TiSi2 formed on polycrystalline silicon with linewidths from 0.2 to 1.1 μm. We observed that the angular distribution of <040> Ti Si2 grains is dependent on the line direction, where the majority of grains had their (100) planes oriented parallel with the line direction. These findings support a model of the C49 to C54 TiSi2 transformation involving rapid growth of certain orientations favored by the one-dimensional geometry imposed by narrow lines.