Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-16T17:27:24.219Z Has data issue: false hasContentIssue false

Defects in Low-k Insulators (κ=2.5 – 2.0): ESR Analysis and Charge Injection

Published online by Cambridge University Press:  18 August 2011

V. V. Afanas’ev
Affiliation:
Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
K. Keunen
Affiliation:
Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
A. P. D. Nguyen
Affiliation:
Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
M. Jivanescu
Affiliation:
Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
A. Stesmans
Affiliation:
Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
Zs. Tokei
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
M. R. Baklanov
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
G. P. Beyer
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
Get access

Abstract

Electron spin resonance study of low-κ insulating layers reveals that from a defect perspective these materials resemble oxygen-rich silicon dioxide matrices. The films fabricated using chemical vapor deposition in combination with porogen technology also contain a considerable amount of residual carbon in the form of clusters. Furthermore, ion sputtering damage generates additional defects provisionally identified as dangling bonds in the silicon oxycarbide clusters. The density of these defects is found to increase with increasing porosity of the low-κ insulator. Nevertheless, a lower defect density may be attained if using a porogen-free self-assembly technology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]For a review see, e.g., Maex, K., Baklanov, M. R., Shamiryan, D., Iacopi, F., Brongersma, S. H., and Yanovitskaya, Z. S., J. Appl. Phys. 93 (2003) 8793.Google Scholar
[2] Kikkawa, T., Kuroki, S., Sakamoto, S., Kohmura, K., Tanaka, H., and Hata, N., J. Electrochem. Soc. 152 (2005) G560.Google Scholar
[3] Shamuilia, S., Afanas’ev, V. V., Somers, P., Stesmans, A., Li, Y.-L., Tőkei, Zs., Groeseneken, G., and Maex, K., Appl. Phys. Lett. 89 (2006) 202909.Google Scholar
[4] Gischia, G. G., Croes, K., Groeseneken, G., Tőkei, Zs., Afanas’ev, V. V., and Zhao, L., Proc. IRPS 2010, p. 549.Google Scholar
[5] Stesmans, A. and Scheerlinck, F., Phys. Rev. B 50 (1994) 5204.Google Scholar
[6] Kim, S. J., Kim, D. L., and Kim, H. J., Thin Solid Films 517 (2009) 2135.Google Scholar
[7] A.Smirnov, E., Vanstreels, K., Verdonck, P., Ciofi, I., Shamiryan, D., Baklanov, M. R., and Phillips, M., Jpn. J. Appl. Phys. 50 (2011), Pt. 2, Art Nr. 05EB03.Google Scholar
[8] Lin, J. and Wang, X., Polymer 48 (2007) 318.Google Scholar
[9] Rivera-Munos, E. M. and Huirache-Akuna, R., Intl. J. Mol. Sci. 11 (2010) 3069.Google Scholar
[10] Afanas’ev, V.V., Stesmans, A., and Andersson, M. O., Phys. Rev. B 54 (1996) 10820.Google Scholar
[11] Fanciulli, M. and Moustakas, T. D., Diamond Relat. Mater. 1 (1992) 773.Google Scholar
[12] Show, Y., Iwase, M., and Izumi, T., Thin Solid Films 274 (1996) 50.Google Scholar
[13] Nakao, S., Kamigaki, Y., Ushio, J., Hamada, T., Ohno, T., Kato, M., Yoneda, K., Kondo, S., and Kobayashi, N., Jpn. J. Appl. Phys. 46 (2007) 3351.Google Scholar
[14] Afanas’ev, V. V. and Stesmans, A., Appl. Phys. Lett. 71 (1997) 3844.Google Scholar