Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-15T21:15:08.344Z Has data issue: false hasContentIssue false

Crystallization Characteristics of Ge-Sb Phase Change Materials

Published online by Cambridge University Press:  31 January 2011

Simone Raoux
Affiliation:
[email protected], IBM Almaden Research Center, 650 Harry Road, San Jose, California, 95120, United States, 408 927 2069, 408 927 2510
Cyril Cabral
Affiliation:
[email protected], IBM T. J. Watson Research Center, Yorktown Heights, New York, United States
Lia Krusin-Elbaum
Affiliation:
[email protected], IBM T. J. Watson Research Center, Yorktown Heights, New York, United States
Jean L. Jordan-Sweet
Affiliation:
[email protected], IBM T.J. Watson Research Center, Yorktown Heights, New York, United States
Martin Salinga
Affiliation:
[email protected], 1. Physikalisches Institut (1A), RWTH University of Technology, Aachen, Germany
Anita Madan
Affiliation:
[email protected], IBM Hudson Valley Research Park, Hopewell Junction, New York, United States
Teresa Pinto
Affiliation:
[email protected], IBM Hudson Valley Research Park, Hopewell Junction, New York, United States
Get access

Abstract

The crystallization behavior of Ge-Sb phase change materials with variable Ge:Sb ratio X between 0.079 and 4.3 was studied using time-resolved x-ray diffraction, differential scanning calorimetry, x-ray reflectivity, optical reflectivity and resistivity vs. temperature measurements. It was found that the crystallization temperature increases with Ge content from about 130 °C for X = 0.079 to about 450 °C for X = 4.3. For low X, Sb x-ray diffraction peaks occurred during a heating ramp at lower temperature than Ge diffraction peaks. For X = 1.44 and higher, Sb and Ge peaks occurred at the same temperature. Mass density change upon crystallization and optical and electrical contrast between the phases show a maximum for the eutectic alloy with X = 0.17. The large change in materials properties with composition allows tailoring of the crystallization properties for specific application requirements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Wuttig, M. and Yamada, N, Nature Mater. 6, 824 (2007).Google Scholar
[2] Gleixner, B., Pirovano, A., Sarkar, J., Ottogalli, F., Tortorelli, I., Tosi, M. and Bez, R., Proc. International Reliability Physics Symposium '07, p. 542 (2007)Google Scholar
[3] Krebs, D., Raoux, S., Rettner, C. T., Shelby, R. M., Burr, G. W. and Wuttig, M., Mar. Res. Soc. Proc. Vol. 1072, paper 1072–G06 (2008)Google Scholar
[4] Raoux, S., Jordan-Sweet, J. L., and Kellock, A., J. Appl. Phys. 103, 114310 (2008).Google Scholar
[5] Cabral, C. Jr., Krusin-Elbaum, L., Bruley, J., Raoux, S., Deline, V., Madan, A., and Pinto, T., Appl. Phys Lett. 93, 071906 (2008)Google Scholar
[6] Raoux, S., Cabral, C. Jr., Krusin-Elbaum, L., Jordan-Sweet, J. L., Virwani, K., Hitzbleck, M., Salinga, M., Madan, A., and Pinto, T. L., J. Appl. Phys. 105, 064918 (2009)Google Scholar
[7] Okabe, T., Endo, S., and Saito, S., J. Non-Cryst. Solids 117/118, 222 (1990)Google Scholar
[8] Pozo, J. M. Del, Herrero, M. P. and Diaz, L., J. Non-Cryst. Solids 185, 183 (1995)Google Scholar
[9] Lankhorst, M. H. R., J. Non-Crystall. Solids 297, 210 (2002).Google Scholar
[10] Raoux, S., Salinga, M., Jordan-Sweet, J. L., and Kellock, A., J. Appl. Phys. 101, 044909 (2007)Google Scholar
[11] Kalb, J., Wuttig, M., and Spaepen, F., J. Mater. Res. 22, 748 (2007)Google Scholar