Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:57:06.283Z Has data issue: false hasContentIssue false

Crystallization Behaviour of Amorphous Si0.5Ge0.5 Films Observed by Positron Annihilation

Published online by Cambridge University Press:  21 February 2011

F. Edelman
Affiliation:
Materials Engng. Faculty, Technical University of Darmstadt, 64287 Darmstadt, Germany
F. Börner
Affiliation:
Martin-Luther-Universität Halle-Wittenberg, Fachbereich Physik, D-06099 Halle(Saale), Germany, e-mail: [email protected](corresponding author)
R. Krause-Rehrberg
Affiliation:
Martin-Luther-Universität Halle-Wittenberg, Fachbereich Physik, D-06099 Halle(Saale), Germany, e-mail: [email protected](corresponding author)
P. Werner
Affiliation:
Max Planck Institute of Microstructure Physics, Halle/Saale D-06120, Germany
R. Weil
Affiliation:
Technion-Israel Institute of Technology, Solid State Institute, 32000 Haifa, ISRAEL
W. Beyer
Affiliation:
Institut für Schicht- und lonentechnik, Forschungszentrum Jülich, D-52425 Julich, Germany
R. Butz
Affiliation:
Institut für Schicht- und lonentechnik, Forschungszentrum Jülich, D-52425 Julich, Germany
Get access

Abstract

The crystallization behavior (ordering) of undoped and boron-doped Si0.5Ge0.5 films, deposited on SiO2/Si(001) substrate by molecular beam epitaxy in hish vacuum at room temperature, were studied by XRD, HRTEM and in situ by Doppler broadening spectroscopy using monoenergetic positrons. Some decomposition features of SiGe solid solutions were demonstrated via splitting the XRD peaks at high temperatures. The SiGe decomposition was detected in the precrystalline state of the SiGe undoped and doped films in the temperature range from 450 to 600 K by compaering S- and W-parameters of SiGe with that of amorphous silicon and germanium. In conclusion, we discuss model of internim ordering states before crystallization.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hamakawa, Y., Ma, W., and Okamoto, H., MRS Bulletin, 18, p.38 (1992).Google Scholar
2. Sameshima, T. and Usui, S., Mater. Res. Symp. Proc. 258, p. 117 (1992).Google Scholar
3. Olesinski, R.W. and Abbaschian, G.J., Bull. Alloy Phase Diagrams, 5, p. 180, (1984).Google Scholar
4. Qteish, A. and Resta, R., Phys. Rev. B.37, p.1,308; p.6,983 (1988).Google Scholar
5. Ourmazd, A. and Bean, J.B., Phys. Rev. Lett., 55, p.765 ((1985).Google Scholar
6. Edelman, F., Komem, Y., Wemer, P., Heydenreich, J., and Iyer, S.S., Solid State Phenomena, 37/38, p.323 (1994).Google Scholar
7. Edelman, F., Weil, R., Werner, P., Reiche, M., and Beyer, W., phys. stat. sol.,a150, p.407 (1995).Google Scholar
8. Edelman, F., Komem, Y., Iyer, S.S., Heydenreich, J., and Baither, D., Thin Solid Films, 222, p.57 (1992).Google Scholar
9.(Edelman, F., Heydenreich, J., Hoehl, D., Matthäi, J., Melnik, I., Rzhanov, A., Voelskov, M., and Wemer, P., phys. stat. sol., a98, p. 383 (1986).Google Scholar
10. Krause-Rehberg, R. and Leipner, H.S.: Positron annihilation in semiconductors, (Springer-Verlag, Berlin 1999).Google Scholar
11. Asoka-Kumar, P., Lynn, K.G., and Welch, D.O.: J. Appl. Phys. 76, p.4,935 (1994)Google Scholar
12. Veen, A. van, Schut, H., Haakvoort, J., Vries, R.A. de, and Ijpma, M.R., AIP Conf. Proc. 218, p.171 (1990).Google Scholar
13. Liszkay, L., Corbel, C., Baroux, L., Hautojarvi, P., Bayhan, M., Brinkmann, A.W., and Tatarenko, S., Appl. Phys. Lett. 64, p.1,380 (1994).Google Scholar