Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-17T15:18:27.987Z Has data issue: false hasContentIssue false

Critical Thickness for Three-Dimensional Epitaxial Island Growth

Published online by Cambridge University Press:  22 February 2011

K. Jagannadham
Affiliation:
Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
J. Narayan
Affiliation:
Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
Get access

Abstract

The generation of misfit dislocation loops in three-dimensional epitaxial islands grown on thick substrates is analyzed. The coherent strain in the island is described by virtual interfacial dislocation loops situated in the interface. The traction free surface boundary conditions are satisfied by the surface dislocation loops situated on the surface of the island. A misfit dislocation loop is formed and the changes in the energy of the configuration used to determine if the total energy is lowered. The numerical analysis is carried out forhemispherical islands of GaAs grown on (100) silicon with a misfit dislocation of Burgers vector 3.84 Å. It has been found energetically favorable to nucleate a misfit dislocation loop at a distance of 3 å from the interface when the radius of the hemispherical island is equal to or greater than 40 å. In addition, a misfit dislocation loop could be nucleated at a larger distance from the interface when the size of the island is larger.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hull, R., Fischer-Colbrie, A., Rosner, S. J., Koch, S. M., and Harris, J. S. Jr., M. R. S. Society, Symposium, 94, 25, 1987.Google Scholar
2. Kvam, E. R., Eaglesham, D. J., Maher, D. M., Humphreys, C. J., Bean, J. C., Green, G. S. and Tanner, B. K., M. R. S. Society, Symposium, 104, 623, 1987.Google Scholar
3. Otsuka, N., Choi, C., Nakamura, Y., Nagakura, S., Fischer, R., Peng, C. K., and Morkoc, H., Appl. Phys. Lett., 49, 277, 1986.CrossRefGoogle Scholar
4. Matthews, J. W., in “Dislocations in Solids”, Ed. Nabarro, F. R. N., North Holland, Amsterdam, New York, 1975, p. 559.Google Scholar
5. Jesser, W. A. and Kuhlmann-Wilsdorf, D., Phys. Stat. Solidi., 19, 95, 1967.CrossRefGoogle Scholar
6. Merwe, J. H. Van der, Woltersdorf, J., and Jesser, W. A., Mat. Sci. Engng., 81, 1, 1986.CrossRefGoogle Scholar
7. Sharan, S., Narayan, J., and Jagannadham, K., in “Dislocations and Interfaces in Semiconductors”, Eds. Rajan, K., Narayan, J. and Ast, D., A publication of AIME, 420 CommonWealth Drive, Warrendale, PA. 15086, also J. Narayan, S. Sharan, A. Srivatsa, and A. S. Nandedkar, Mat. Sci. Engng., B1, 105, 1985.Google Scholar
8. Pashley, D. W., J. Mat. Education., 7, 729, 1985.Google Scholar
9. Narayan, J., Larson, B. C., and Christie, W. H., in “Laser Solid Interactions and Laser Processing”, Eds. Ferris, S. D., Leamy, H. J. and Poate, J. M., M. R. S. Society, Boston 1978, p. 440.Google Scholar
10. Jagannadham, K., in “Structure and Deformation of Boundaries” Ed. Subramanian, K. N. and Imani, M. A., The Metallurgical Society, Warrendale, PA 15086, 1986, p. 51.Google Scholar
11. Jagannadham, K. and Narayan, J., J. Appl. Phys., 62, 1698, 1987 CrossRefGoogle Scholar
12. Jagannadham, K. and Marcinkowski, M. J., in “Unified Theory of Fracture”, Trans. Tech SA, Switzerland, 1983.Google Scholar
13. Marcinkowski, M. J. and Armstrong, R. W., J. Appl. Phys., 43, 2548, 1972.CrossRefGoogle Scholar
14. Salamon, N. J. and Dundurs, J., J. Elasticity, 1, 153, 1971.CrossRefGoogle Scholar
15. Hirth, J. P. and LOthe, J., Theory of Dislocations, McGraw Hill, 1968.Google Scholar
16. Atachi, S., J. Appl. Phys., 58, Rl, 1985.Google Scholar
17. Merwe, J. H. Van der, J. Appl. Phys., 34, 123, 1962.10.1063/1.1729051CrossRefGoogle Scholar
18. People, R. and Bean, J. C., Appl. Phys. Lett., 49, 229, 1986.10.1063/1.97637CrossRefGoogle Scholar
19. Cabrera, N., Surf. Sci., 2, 320, 1964.CrossRefGoogle Scholar
20. Jesser, W. A. and Kuhlmann-Wilsdorf, D., Phys. Stat. Solidi., 19, 95, 1967.CrossRefGoogle Scholar