Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:30:23.072Z Has data issue: false hasContentIssue false

Correlation of The Mechanical Properties of Silicon Oxynitride Films to Processing Parameters, Film Stoichiometry, and Hydride Bond Concentration

Published online by Cambridge University Press:  15 February 2011

Mansour Moinpour
Affiliation:
Intel Corporation, 2200 Mission College Blvd., Santa Clara, CA 95052 USA
Farhad Moghadam
Affiliation:
Intel Corporation, 2200 Mission College Blvd., Santa Clara, CA 95052 USA
Byron Williams
Affiliation:
Stanford University, Stanford, CA 94305 USA
Get access

Abstract

A selective range of hydrated silicon oxynitride thin films (SixOyNz:H) have been characterized in terms of their stress, hardness, and modulus in order to mechanically qualify them for use as an encapsulation layer for memory devices (e.g., Flash and EPROM memories). These films are analyzed by RBS and HFS for stoichiometry. The films exhibited stress values between 1.86 x 109 to -3.54 x 109 dyne/cm2 and showed a linear correlation with the hydride ratio (N-H/Si-H). An Ultra Micro-Indentation System (UMIS) measured hardness values between 10.5 GPa to 16.2 GPa while the elastic modulus varied between 119.1 to 141.2 GPa. The monatomic increase of modulus with hardness is attributed to increased amounts of nitrogen and nitrogen hydride bonding in the silicon oxynitride samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Shams, Q.A. and Brown, W.D., J. Electrochem. Soc. 137, 1244 (1990).Google Scholar
2 Hao, M. and Lee, J.C., Appl. Phys. Lett. 60, 445 (1992).Google Scholar
3 Kapoor, V.J., Bailey, R.S. and Smith, S.R., J. Vac. Sci. Tech., 18 305 (1981).Google Scholar
4 Osenbach, J.W. and Knolle, W.R., J. Electrochem. Soc. 139, 3346 (1992).Google Scholar
5 Nguyen, V.S., Landford, W.A., and Rieger, A.L., J. Electrochem. Soc. 133, 970 (1986).Google Scholar
6 Takasaki, K., K.Koyamo, and Takagi, M., Abstract 298, p. 767, The Electrochem. Soc. Extended Abstracts, Vol. 80–2, Hollywood, FL, Oct. 5-10, 1980.Google Scholar
7 Van Den Hoek, W.G.M., Mater. Res. Soc. Symp. Proc. 68, 335 (1980).Google Scholar
8 Draper, B.L. and Hill, T.A., J. Vac. Sci. Tech., B9, 1956 (1991).Google Scholar
9 Flinn, P.A., Am. Inst. Phys., 73 (1992).Google Scholar
10 Yost, B., Li, C., Berman-Reuter, B. and Sullivan, T., Mater. Res. Soc. Symp. Proc. 226, 225 (1991).Google Scholar
11 Chiang, C., Neubauer, G., Sauter Mack, A., Yoshioka, K., Cuan, G., Flinn, P.A. and Fraser, D.B., Mater. Res. Soc. Symp. Proc. 265, 219 (1992).Google Scholar
12 Moinpour, M., Mack, K., Cham, J., F, Moghadam, and Williams, B., Mater. Res. Soc. Symp. Proc. 338, 75 (1994).Google Scholar
13 Pharr, G.M. and Oliver, W.C., MRS Bulletin. 17, 28 (1992).Google Scholar
14 Moinpour, M., unpublished results.Google Scholar
15 Bhushan, B., Murarka, S.P. and Gerlach, J., J. Vac. Sci. Tech. B8, 1068 (1990).Google Scholar
16 McInerney, E.J. and Flinn, P.A., 20th Annual Proceedings Reliability and Physics 1982. 264 (1982).Google Scholar
17 Shintani, A., Sugaki, S., and Nakashima, H., J. Appl. Phys. 51, 4197 (1980).Google Scholar