Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T07:48:47.875Z Has data issue: false hasContentIssue false

Correlation of Hydrogenated Nanocrystalline Silicon Microstructure and Solar Cell Performance

Published online by Cambridge University Press:  21 March 2011

Keda Wang
Affiliation:
Department of Physics & Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255
Anthon Canning
Affiliation:
Department of Physics & Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255
J.R. Weinberg-Wolf
Affiliation:
Department of Physics & Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255
E.C.T. Harley
Affiliation:
Department of Physics & Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255
Daxing Han
Affiliation:
Department of Physics & Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255
Baojie Yan
Affiliation:
United Solar Ovonic Corporation., 1100 W Maple Road, Troy, MI 48084
Guozhen Yue
Affiliation:
United Solar Ovonic Corporation., 1100 W Maple Road, Troy, MI 48084
Jeffrey Yang
Affiliation:
United Solar Ovonic Corporation., 1100 W Maple Road, Troy, MI 48084
Subhendu Guha
Affiliation:
United Solar Ovonic Corporation., 1100 W Maple Road, Troy, MI 48084
Get access

Abstract

We used Raman and photoluminescence (PL) spectroscopy to study the relationship between the material properties and the solar cell performance of hydrogenated nanocrystalline silicon (nc-Si:H). The crystalline volume fraction (fc) was deduced from the Raman spectrum. Generally, a high fc leads to a high short circuit current density and a low open circuit voltage. PL spectra were measured using 632.8-nm and 442-nm laser lines. There are two distinguished PL peaks at 80 K, one at ∼1.4 eV originating from the amorphous region, while the other at = 0.9 eV from the nanocrystalline grain boundary regions. Generally, the intensity fraction of this low energy PL peak, IPLc/(IPLa+IPLc), was larger for 442-nm than 632.8-nm excitation, indicating an increase in crystallinity along the growth direction. However, for the best initial performance cells obtained by H2 dilution profiling and the i/p buffer layer, the intensity fraction IPLc/(IPLa+IPLc) decreased from the bulk to the topi/p interface. The Raman and PL results give insight into the correlation between the microstructures and the cell performance, and verified that properly-controlled crystallinity in the intrinsic layer and buffer layer at the i/p interface layer are important for optimizing nc-Si:H solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Yang, J., Banerjee, A., and Guha, S., Appl. Phys. Lett. 70, 2975 (1997).Google Scholar
2. Banerjee, A., Yang, J., and Guha, S., MRS Symp. Proc. 557, 743 (1999).Google Scholar
3. Meier, J., Torres, P., Platz, R., Dubail, S., Kroll, U., Selvan, J. A. Anna, Vaucher, N. Pellaton, Hof, Ch., Fischer, D., Keppner, H., Shah, A., Ufert, K.-D., Giannoules, P., and Koehler, J., MRS Symp. Proc. 420, 3 (1996).Google Scholar
4. Ogawa, K., Saito, K., Sano, M., and Sakai, A., in Technical Digest of International PVSEC-12, 2001 Jeju, Korea, pp. 343346.Google Scholar
5. Yamamoto, K., Yoshimi, M., Tawada, Y., Fukuda, S., Sawada, T., Meguro, T., Takata, H., Suezaki, T., Koi, Y., Hayashi, K., Suzuki, T., and Nakajima, A., in Technical Digest of International PVSEC-12, 2001 Jeju, Korea, pp. 547548.Google Scholar
6. Yan, B., Yue, G., Yang, J., Banerjee, A., and Guha, S., MRS Symp. Proc. 762, 309 (2003).Google Scholar
7. Yue, Guozhen, Lorentzen, J. D., Lin, Jing, Wang, Qi and Han, Daxing, Appl. Phys. Lett. 75, 492494 (1999).Google Scholar
8. Han, Daxing, Lorentzen, J. D., Weinberg-Wolf, J., McNeil, L. E., and Wang, Qi, J. Appl. Phys., 94, 5 (2003) 29302936.Google Scholar
9. Droz, C., Vallat-Sauvain, E., Bailat, J., Feitknecht, L., Meier, J., Niquille, X., Shah, A., Proceedings of 3rd World conference on PV Energy Conversion, Osaka Japan, (2003).Google Scholar
10. Han, Daxing, Yue, Guozhen, Lorentzen, J. D., Lin, Jing, Habuchi, H., and Wang, Qi, J.Appl. Phys. 87(4), 18821888 (2000).Google Scholar
11. Han, Daxing and Wang, Keda, Solar Energy Materials and Solar Cells, 78 (2003) 181233.Google Scholar
12. Carius, R., Merdzhanova, T., Finger, F., MRS Symp. Proc. 762, 321 (2003).Google Scholar
13. Yan, B., Yue, G., Yang, J., Guha, S., Han, D., Williamson, D. L., and Jinag, C.-S., MRS Symp. Proc. 808, A8.5 (2004), in press.Google Scholar
14. Finger, F., Klein, S., Dylla, T., Neto, A. L. Baia, Vetter, O., and Carius, R., Mat. Res. Symp. Proc. 715, 213 (2002).Google Scholar