Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T18:03:22.111Z Has data issue: false hasContentIssue false

Correlation Between Annealing Temperature and Crystallinity of Si Films Prepared by Thermal Plasma Jet Crystallization Technique

Published online by Cambridge University Press:  01 February 2011

Hirotaka Kaku
Affiliation:
[email protected], Hiroshima Univ., Grad. School of Advanced Sciences of Matter, Kagamiyama1-3-1, Higashi-Hiroshima, Hiroshima, 739-8530, Japan, +81-82-424-7648, +81-82-422-7038
Seiichiro Higashi
Affiliation:
[email protected], Hiroshima University, Grad. School of Advanced Sciences of Matter, Kagamiyama1-3-1, Higashi-Hiroshima, Hiroshima, 739-8530, Japan
Tatsuya Okada
Affiliation:
[email protected], Hiroshima University, Grad. School of Advanced Sciences of Matter, Kagamiyama1-3-1, Higashi-Hiroshima, Hiroshima, 739-8530, Japan
Hideki Murakami
Affiliation:
[email protected], Hiroshima University, Grad. School of Advanced Sciences of Matter, Kagamiyama1-3-1, Higashi-Hiroshima, Hiroshima, 739-8530, Japan
Seiichi Miyazaki
Affiliation:
[email protected], Hiroshima University, Grad. School of Advanced Sciences of Matter, Kagamiyama1-3-1, Higashi-Hiroshima, Hiroshima, 739-8530, Japan
Get access

Abstract

Transient reflectivity of amorphous Si (a-Si) films during thermal plasma jet (TPJ) irradiation has been measured to characterize the phase transformation in millisecond time domain. The a-Si films first transform to crystalline by solid phase crystallization (SPC) followed by melting of the film, and then solidifies to the final crystalline state. By increasing the SPC temperature from about 1100 K to 1300 K, the duration of phase transformation decreases from about 1 ms to 100 μs. The crystallinity of the SPC films is improved not only by annealing the films at a high temperature but also annealing them with longer duration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sameshima, T., Usui, S., and Sekiya, M., IEEE Electron Device Lett. EDL-7 (1986) 276.Google Scholar
2. Kaku, H., Higashi, S., Taniguchi, H., Murakami, H., and Miyazaki, S., Appl. Surf. Sci. 244 (2005) 8.Google Scholar
3. Higashi, S., Kaku, H., Murakami, H., Miyazaki, S., Watakabe, H., Ando, N. and Sameshima, T., Jpn. J. Appl. Phys. 44 (2005) L108.Google Scholar
4. Okada, T., Higashi, S., Kaku, H., Murakami, H. and Miyazaki, S., Jpn. J. Appl. Phys., 45, No. 5B(2006)pp.43554357 Google Scholar
5. Okada, T., Higashi, S., Kaku, H., Koba, N., Murakami, H. and Miyazaki, S., Proc. Dry Process Symposium p. 405 2005. (Jeju, Korea, Nov. 28-30, 2005)Google Scholar
6. Higashi, S. and Sameshima, T., Jpn. J. Appl. Phys., 40 (2001) 480 Google Scholar
7.E. Donovan, P., Spaepen, F., Turnbull, D., Poate, J. M. and Jacobson, D.C., Appl. Phys. Lett. 42 (2005) 698 Google Scholar