Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T18:05:47.323Z Has data issue: false hasContentIssue false

Conductivity dependence on oxygen partial pressure and transport number measurements of La2Mo2O9

Published online by Cambridge University Press:  03 September 2012

A. Tarancón
Affiliation:
EME (CEMIC&CeRMAE), Departament d'Electrònica, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, SPAIN, e-mail: [email protected]
G. Dezanneau
Affiliation:
EME (CEMIC&CeRMAE), Departament d'Electrònica, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, SPAIN, e-mail: [email protected]
A. Morata
Affiliation:
EME (CEMIC&CeRMAE), Departament d'Electrònica, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, SPAIN, e-mail: [email protected]
F. Peiró
Affiliation:
EME (CEMIC&CeRMAE), Departament d'Electrònica, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, SPAIN, e-mail: [email protected]
J.R. Morante
Affiliation:
EME (CEMIC&CeRMAE), Departament d'Electrònica, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, SPAIN, e-mail: [email protected]
T. Norby
Affiliation:
Center for Materials Science, Department of Chemistry, University of Oslo Gaustadalleen, 21, N-0349 Oslo, NORWAY
Get access

Abstract

Transport number measurements and impedance spectroscopy in controlled temperature and atmosphere were used to investigate the electrical properties of La2Mo2O9 sintered samples. These samples were prepared from nanocrystalline La2Mo2O9 powders as obtained from a new soft chemistry route involving the polymerisation of acrylamide. By means of the electromotive force method measurements, the sintered compound was found mainly oxygen conductor in the range of 400 °C-800 °C with oxide-ion transport number greater than 0.99. The effect of the oxygen partial pressure on the electrical conductivity of La2Mo2O9 was investigated by impedance spectroscopy from 1 to 10−22 atm, showing a highly stable conduction properties up to 10−17 atm at 800 °C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lacorre, P., Goutenoire, F., Bohnke, O., Retoux, R. and Lagilant, Y.. Nature 404, 856 (2000).Google Scholar
2 Jiang, S.P., Love, J.G. and Badwal, S.P.S., Key Eng. Mater. 125, 81 (1997)Google Scholar
3 Norby, T., Solid State Ionics 28–30, 1586 (1988).Google Scholar
4 Tarancón, A., Dezanneau, G., Arbiol, J., Peiró, F. and Morante, J. R., J. Power Sources 118, 256 (2003)Google Scholar
5 NorEcs Norwegian Electro Ceramics AS (http: //www.norecs.com)Google Scholar
6 Boukamp, B.A., Solid State Ionics 18–19, 136 (1986)Google Scholar
7 Goodenough, J. B., Annu. Rev. Mater. Res. 33, 91 (2003)Google Scholar
8 Liu, M., Hu, H., J. Electrochem. Soc. 143, L109 (1996)Google Scholar