Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T04:56:17.226Z Has data issue: false hasContentIssue false

Comparison of Ultra-low-energy Ion Implantation of Boron and BF2

Published online by Cambridge University Press:  10 February 2011

Jihwan Park
Affiliation:
Department of Materials Science and Engineering, Kwangju Institute of Science and Technology, #1, Oryong-dong, Buk-ku, Kwangju, 500-712, KOREA
Hyunsang Hwang
Affiliation:
Department of Materials Science and Engineering, Kwangju Institute of Science and Technology, #1, Oryong-dong, Buk-ku, Kwangju, 500-712, KOREA, [email protected]
Get access

Abstract

We have compared the electrical characteristics and the depth profile of an ultrashallow junctions formed by boron implantation at 0.5 keV and BF2 implantation at 2.2 keV. The modeling of the boron profile was performed using the Monte Carlo method for an as-implanted profile and the computationally efficient method for transient-enhanced diffusion. A junction depth of BF2 is shallower than that of boron after annealing. HF dipping prior to rapid thermal annealing causes a significant loss of dopant and high sheet resistance. Considering the 0.1 νn metal-oxide-semiconductor field-effect-transistor (MOSFET) application, the optimizations of implantation and annealing conditions are necessary to satisfy the requirement ofjunction depth and sheet resistance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. The National Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose, California (1994).Google Scholar
2. Liu, T. M. and Oldham, W. G., IEEE Electron Device Lett., EDL-4, p. 59 (1983).Google Scholar
3. Stolk, P. A., Gossman, H. J., Eaglesham, D. J., Jacobson, D. C., Rafferty, C. S., Gilmer, G. H., Jaraiz, M., Poate, J. M., Luftman, H. S., Haynes, T. E., Journal of Appl. Phys., 81(9), p. 6031 (1997).Google Scholar
4. Downey, D. F., Osburn, C. M., and Marcus, S. D., Solid State Technology, Dec. p. 71 (1997).Google Scholar
5. Jones, E. C., Linder, B. P. and Cheung, N. W., Jpn. J. Appl. Phys., 35, p. 1027 (1996).Google Scholar
6. Drainer, K. J., Talwar, S., McCarthy, A. M., and Weiner, K. H., IEEE Electron Device Lett., 17, p. 461 (1996).Google Scholar
7. Yu, S. S., Kennel, H. W., Giles, M. D., and Packan, P. A., IEEE proceeding of International Electron Device Meeting 1997, p. 509 (1997).Google Scholar
8. Suzuki, K., Aoki, M., Kataoka, Y., Sasaki, N., Hoefler, A., Feudel, T., Strecker, N. and Fichtner, W., IEEE proceeding of International Electron Device Meeting 1996, p. 799 (1996).Google Scholar
9. Hobler, G., Vuong, H. H., Bevk, J., Agarwal, A., Gossmann, H. J., Jacobson, D. C., IEEE proceeding of International Electron Device Meeting 1997, p. 489 (1997).Google Scholar