Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:46:52.859Z Has data issue: false hasContentIssue false

Cmos Polysilicon Thin Film Transistors with Simultaneously Deposited Layers for Source-Drain and Gate

Published online by Cambridge University Press:  21 February 2011

T. Y. Huang
Affiliation:
Electronics & Imaging Laboratory Xerox Palo Alto Research Center 333 Coyote Hill Rd., Palo Alto, CA 94304
C. C. Tsai
Affiliation:
Electronics & Imaging Laboratory Xerox Palo Alto Research Center 333 Coyote Hill Rd., Palo Alto, CA 94304
I. W. Wu
Affiliation:
Electronics & Imaging Laboratory Xerox Palo Alto Research Center 333 Coyote Hill Rd., Palo Alto, CA 94304
A. G. Lewis
Affiliation:
Electronics & Imaging Laboratory Xerox Palo Alto Research Center 333 Coyote Hill Rd., Palo Alto, CA 94304
A. Chiang
Affiliation:
Electronics & Imaging Laboratory Xerox Palo Alto Research Center 333 Coyote Hill Rd., Palo Alto, CA 94304
R. H. Bruce
Affiliation:
Electronics & Imaging Laboratory Xerox Palo Alto Research Center 333 Coyote Hill Rd., Palo Alto, CA 94304
Get access

Abstract

A new process architecture for fabricating CMOS thin film transistors (TFTs) using in-situ-doped polysilicon source-drain layers is proposed. In the new architecture, a top-gate n-channel TFT and a bottom-gate p-channel TFT, or vice versa, form a CMOS pair. This allows an n+ - doped polysilicon bottom (or top) layer to serve simultaneously as the source-drain layer of the n-channel TFTs and the gate layer of the p-channel TFTs; while a p+ - doped polysilicon top (or bottom) layer serves as the source-drain layer of the p-channel TFT and the gate layer of the n-channel TFT. It thus eliminates the deposition of a separate doped gate layer normally required in the conventional process flow. In addition, a thin tri-layer stack, consisting of undoped-poly / gate dielectric / undoped-poly, separates the two doped polysilicon layers, thus allowing the use of a single island mask to define the channel regions for both the n- and p-channel TFTs. As a result, the photolithographic steps are also reduced by one mask. Working n- and p-channel TFTs with both top- and bottomgate structures, obtained by reversing the dopant types of the top and the bottom layers, have been successfully demonstrated using low-temperature (< 600 °C) polysilicon technology.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tuan, H., Mat. Res. Soc. Symp. Proc., 33, 247257 (1984).Google Scholar
2. Fennell, L. et al. , SID Tech. Dig., 167–169 (1988).Google Scholar
3. Ohwada, J. et al. , IEEE Trans. Elec. Dev., ED-36, 1923–1928(1989).Google Scholar
4. Serikawa, T. et al. , IEEE Trans. Elec. Dev., ED-36, 1929–1933 (1989).Google Scholar
5. Lewis, A. G. et al. , Tech. Dig., IEDM, 264–267 (1988).Google Scholar
6. Lewis, A. G. et al. , Tech. Dig., IEDM, 260–263 (1988).Google Scholar
7. Lifshitz, N., Luryi, S., Tech. Dig., IEDM, 54–57 (1982).Google Scholar
8. Chapman, R. A. et al. , Tech. Dig., IEDM, 52–55 (1988).Google Scholar
9. Pfiester, J. P., and Parrillo, L. C., IEEE Trans. Elec. Dev., ED-35, 1305–1310 (1988).Google Scholar
10. Wu, I. W. et al. , Elec. Dev. Lett., EDL-10, 123–125 (1989).Google Scholar
11. Chiang, A. et al. , Mat. Res. Soc. Symp. Proc., 106, 305310 (1988).10.1557/PROC-106-305Google Scholar
12. Wu, I. W. et al. , J. Appl. Phys., 65, 40364039 (1989).Google Scholar