Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T16:11:05.927Z Has data issue: false hasContentIssue false

Chemical Reaction Mechanisms of Diamond Growth

Published online by Cambridge University Press:  21 February 2011

Michael Frenklach*
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802
Get access

Abstract

It is becoming increasingly apparent that future progress in diamond chemical vapor deposition depends on deeper understanding of the underlying mechanism of surface processes. Substantial efforts toward this goal have led to several conclusions on which consensus is beginning to emerge. Among them are the mediating role of hydrogen atoms, generic features of the growth kinetics, thermodynamic stability of reconstructed (100) surfaces, and the insertion reaction of methyl into (100)-(2×l) dimers. Despite these efforts, an overall picture of diamond growth in terms of elementary processes is still lacking. In this paper, the current state of mechanistic understanding is reviewed, emphasizing common themes, and new results are presented. Among the latter are the effect of reaction reversibility on surface morphology, surface migration, and a new mechanism for diamond growth from acetylene.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Spear, K. E. and Dismukcs, J. P., Eds., Synthetic Diamond: Emerging CVD Science and Technology (Wiley, New York, 1994).Google Scholar
2. Dismukes, J. P. and Ravi, K. V., Eds., Proceedings of the Third International Symposium on Diamond Materials (The Electrochemical Society, Permington, NJ, 1993).Google Scholar
3. Frenklach, M., in Molecular processes in diamond formation Purdes, A. J., Angus, J. C., Davis, R. F., Meyerson, B. M., Spear, K. E., and Yoder, M., Eds. (The Electrochemical Society, Permington, NJ, 1991), p. 142.Google Scholar
4. Frenklach, M. and Spear, K. E., J. Mater. Res. 3, 133 (1988).Google Scholar
5. Frenklach, M., in A Unifying Picture of Gas Phase Formation and Growth of PAH, Soot, Dianwnd and Graphite Tarter, J. C., Chang, S., and DcFrees, D. j., Eds. (NASA Conference Publication 3061, 1990), p. 259.Google Scholar
6. Frenklach, M. and Wang, H., Phys. Rev. B 43, 1520 (1991).Google Scholar
7. Harris, S. J., Appl. Phys. Lelt. 56, 2298 (1990).Google Scholar
8. Bullerand, J. E. Woodin, R. L., Phil. Trans. R. Soc. Lond. A 342, 209 (1993).Google Scholar
9. Loh, M. H. and Cappelli, M. A., Diamond Relat. Mater. 2, 454 (1993).Google Scholar
10. Goodwin, D. G., J. Appl. Phys. 74, 6888 (1993).Google Scholar
11. Harris, S. J. and Goodwin, D. G., J. Phys. Chem. 97, 23 (1993).Google Scholar
12. Skokov, S., Weiner, B., and Frenklach, M., J. Phys. Chem. 98, 8 (1994).Google Scholar
13. Cappelli, M. A. and Loh, M. H., presented at the 4th Europian Conference on Diamond, Diamond-like and Related Materials, Albufeira, Portugal, 1993.Google Scholar
14. Coltrin, M. E. and Dandy, D. S., J. Appl. Phys. 74, 5803 (1993).Google Scholar
15. Fedosayev, D. V., Deryagin, B. V., and Varasavskaja, I. G., Surf. Coatings Technol. 38, 9 (1989).Google Scholar
16. Frenklach, M., J. Appl. Phys. 65, 5142 (1989).Google Scholar
17. Davidson, B. N. and Pickett, W. E., Nature (1994. submitted).Google Scholar
18. Lambrecht, W. R. L., Lee, C. H.. Segall, B.. Angus, J. C., Li, Z., and Sunkara, M., Nature 364, 607 (1993).Google Scholar
19. Frenklach, M., J. Chem. Phys. 97, 5794 (1992).Google Scholar
20. Wu, C. H., Tamor, M. A., Potter, T. J., and Kaiser, E. W., J. Appl. Phys. 68, 4825 (1990).Google Scholar
21. Harris, S. J., Weiner, A. M., and Perry, T. A.. Appl. Phys. Lett. 53. 1605 (1988).Google Scholar
22. Hsu, W. L., Appl. Phys. Lett. 59, 1427 (1991).Google Scholar
23. Hsu, W. L., J. Appl. Phys. 72, 3102 (1992).Google Scholar
24. Celii, F. G. and Butler, J. E., Annu. Rev. Phys. Chem. 42, 643 (1991).Google Scholar
25. Davies, P. B. and Marlineau, P. M., J. Appl. Phys. 71, 6125 (1992).Google Scholar
26. Mermingen, K. L., Childs, M. A., Chevako, P., Toyoda, H., Anderson, L. W., and Lawer, J. E., Chem. Phys. Lett. 204, 573 (1993).Google Scholar
27. Joeris, P., Benndorf, C., and Bohr, S., J. Appl. Phys. 71, 4638 (1992).Google Scholar
28. Campargue, A., Chenevicr, M., Fayette, L., Marcus, B.. Mermoux, M.. and Ross, A. J., Appl. Phys. Lett. 62, 134 (1993).Google Scholar
29. Goodwin, D. G. and Gavillct, G. G., J. Appl. Phys. 68, 6393 (1990).Google Scholar
30. Kondoh, E., Tanaka, K., and Ohta, T., J. Appl. Phys. 74, 4513 (1993).Google Scholar
31. Meeks, E., Kee, R. J., Dandy, D. S., and Coltriti, M. E., Combust. Flame 92, 144 (1993).Google Scholar
32. Cappelli, M. A. and Paul, P. H., J. Appl. Phys. 67, 2596 (1990).Google Scholar
33. D'Evelyn, M. P., Chu, C. J., Hauge, R. H., and Margrave, J. L., J. Appl. Phys. 71, 1528 (1992).Google Scholar
34. Johnson, C. E., Weimer, W. A., and Cerio, F. M., J. Mater. Res. 7, 1427 (1992).Google Scholar
35. For Example: Harris, S. J. and Martin, L. R., J. Mater. Res. 5, 2313 (1990);Google Scholar
Harris, S. J., Weiner, A. M., and Perry, T. A., J. Appl. Phys. 70, 1385 (1991);Google Scholar
Yarbrough, W. A., Tankala, K., and DcbRoy, T., J. Mater. Res. 7, 379 (1992);Google Scholar
Wang, Y., Evans, E. A., Zeatoun, L., and Angus, J. C., Presented at the Third IUMRS International Conference on Advanced Materials, 1993.Google Scholar
36. Harris, , J. Appl. Phys. 65, 3044 ( 1989).Google Scholar
37. Tsuda, M., Nakajima, M., and Oikawa, S., J. Am. Chem. Soc. 108, 5780 (1986).Google Scholar
38. Tsuda, M., Nakajima, M., and Oikawa, S., Jpn. J. Appl. Phys. 26, L527 (1987).Google Scholar
39. Brenner, D. W., Phys. Rev. B 42, 9458 (1990).Google Scholar
40. Valone, S. M., Trkula, M., and Laia, J. R., J. Mater. Res. 5, 2296 (1990).Google Scholar
41. Mehandru, S. P. and Anderson, A. B., J. Mater. Res. 5, 2286 (1990).Google Scholar
42. Pederson, M. R., Jackson, K. A., and Pickett, W. E., Phys. Rev. B 44, 3891 (1991).Google Scholar
43. Huang, D. and Frenklach, M., J. Phys. Chem. 95, 3692 (1991).Google Scholar
44. Back, R. A., Can. J. Chem. 61, 916 (1983).Google Scholar
45. Tabayashi, K. and Bauer, S. H., Combust. Flame 34, 63 (1979).Google Scholar
46. Deak, P., Giber, J., and Occhsner, H., Surf. Sci. 250, 287 (1991).Google Scholar
47. Yarbrough, W. A., in Diamond growth on the (110) surface, Holly, S. and Feldman, A., Eds. (SPIE-The International Society of Optical Engineers, Bellingham, WA, 1991), p. 90.Google Scholar
48. Angus, J. C. and Hayman, C. C., Science 241, 913 (1988).Google Scholar
49. Spear, K. E. and Frenklach, M., presented at First International Symposium on Diamond and Diamond-like Films, May 7–12 1989, 1989.Google Scholar
50. Huang, D. and Frenklach, M., J. Phys. Chem. 96, 1868 (1992).Google Scholar
51. Yang, Y. L. and D'Evelyn, M. P., J. Vac. Sci. Technol. A 10, 978 (1992).Google Scholar
52. Lurie, P. G., Surf. Sci. 65, 453 (1977).Google Scholar
53. Pate, B. B., Surf. Sci. 165, 83 (1986).Google Scholar
54. Hamza, A. V., Kubiak, G. D., and Stulen, R. H., Surf. Sci. 237, 35 (1990).Google Scholar
55. Thomas, R. E., Posthill, J. B., Rudder, R. A., Markunas, R. J., and Frenklach, M., in Diamond surface studies of growth mechanisms from water-alcohol deposition chemistries, Dismukes, J. P. and Ravi, K. V., Eds. (The Electrochemical Society, Penningion, NJ, 1993), p. 71.Google Scholar
56. Okada, K., Komatsu, S., Ishigaki, T., Matsumoto, S., and Moriyoshi, Y., Appl. Phys. Lett. 60, 959 (1992).Google Scholar
57. Verwoerd, W. S., Surf Sci. 103, 404 (1981).Google Scholar
58. Yang, S. H., Drabold, D. A., and Adams, J. B., Phys. Rev. B48, 5261 (1993).Google Scholar
59. Skokov, S., Canner, C. S., Weiner, B., and Frenklach, M., Phys. Rev. B 49, 5662 (1994).Google Scholar
60. Frauenheim, T., Stephan, U., Blaudcck, P., Porezag, D., Busmann, H. G., Zimmennann-Edling, W., and Lauer, S., Phys. Rev. B. in press (1994).Google Scholar
61. Garrison, B. J., Dawnkaski, E. J., Srivastava, D., and Brenner, D. W., Science 255, 835 (1992).Google Scholar
62. Zhu, M., Hauge, R. H., Margrave, J. L., and D'Evelyn, M. P., in Mechanism for diamond growth on flat and stepped diamond (100) surfaces Dismukes, J. P. and Ravi, K. V., Eds. (The Electrochemical Society, Penningion, NJ, 1993), p. 138.Google Scholar
63. Allingcr, N. L., Yuh, Y. H., and Lii, J., J. Am. Chem. Soc. 111, 8551 (1989).Google Scholar
64. Skokov, S., Weiner, B., and Frenklach, M., J. Phys. Chem. (1994, submitted).Google Scholar
65. Imai, T., Ueda, T., and Fujimori, N., presented at Japan Applied Physics Conference, Kansai University, Japan, September 16–19, 1992.Google Scholar
66. van Enckevort, W. J. P., Janssen, G., Vollenbcrg, W., Schermer, J. J., Giling, L. J., and Seal, M., Diamond Related Mater. 2, 997 (1993).Google Scholar
67. Martin, L. R., J. Mater. Sci. Lett. 12, 246 (1993).Google Scholar
68. Huang, D., Frenklach, M., and Maroncelli, M., J. Phys. Chem. 92, 6379 (1988).Google Scholar
69. Besler, B. H., Hase, W. L., and Hass, K. C., J. Phys. Chem. 96, 9363 (1993).Google Scholar
70. Chang, X. Y., Thompson, D. L., and Raff, L. M., J. Phys. Chem 97, 10112 ( 1993).Google Scholar
71. Belton, D.N. and Harris, S. J., J. Chem. Phys. 96, 2371 (1992).Google Scholar
72. Harris, S. J. and Belton, D. N., Jpn. J. Appl. Phys. 30, 2615 (1991).Google Scholar
73. Mallard, W. G., Westley, F., Herron, J. T., Hampson, R. F., and Frizzell, D. H., NIST Chemical Kinetics Database 5.0 (National Institute of Standards and Technolog), Geithersburg, MD, 1993).Google Scholar
74. Frenklach, M., Phys. Rev. B 45, 9455 (1992).Google Scholar
75. Loh, M. H. and Cappelli, M. A., in Study of precursor transport during diamond synthesis in a supersonic flow, Dismukes, J. P. and Ravi, K. V., Eds. (The Electrochemical Society, Pennington, NJ, 1993), p. 17.Google Scholar
76. Frenklach, M., Huang, D., Thomas, R. E.. Rudder, R. A., and Markunas, R. J., Appl. Phys. Len. 63, 3090 (1993).Google Scholar