Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T16:58:34.295Z Has data issue: false hasContentIssue false

Charging Model of a Si Nanocrystal-based Floating Gate in a Quantum Flash Memory

Published online by Cambridge University Press:  01 February 2011

Bertrand Leriche
Affiliation:
[email protected], ENSPS, InESS Bd Sébastien Brant, BP 10413, ILLKIRCH F67412, France
Yann Leroy
Affiliation:
[email protected], ENSPS, InESS, Bd Sébastien Brant, BP 10413, ILLKIRCH, F67412, France
Anne-Sophie Cordan
Affiliation:
[email protected], ENSPS, InESS, Bd Sébastien Brant, BP 10413, ILLKIRCH, F67412, France
Get access

Abstract

We propose a theoretical study for charging the floating gate composed of Si nanocrystals (NCs), in a non-volatile flash memory. Only a few electrons tunnel from the channel of a metal-oxide-semiconductor transistor into the two-dimensional array of nanocrystals.

Our model is based on the geometrical and physical properties of the device, in order to take the dispersion of the relevant parameters into account: NC radii, inter-NC distances, tunnel oxide and gate oxide thicknesses. The energy subbands of the channel are explicitly included, together with the doping density.

This three-dimensional model of electron tunneling into a NC is numerically solved through a two-dimensional finite element approach, which allows extensive numerical experimentations.

The tunneling times to charge a single NC or the whole NC floating gate are evaluated in a finer detail, and the influence of the dispersion of the relevant parameters is discussed.

Such a study may help the experimentalists to build efficient quantum flash memories.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbe, E. F., and Chan, K., Appl. Phys. Lett. 68, 1377 (1996).Google Scholar
2. Molas, G., Salvo, B. D., Mariolle, D., Ghibaudo, G., Toffoli, A., Buffet, N., and Deleonibus, S., Solid-State Electron. 47, 1645 (2003).Google Scholar
3. Decossas, S., Mazen, F., Baron, T., Bremond, G., and Souifi, A., Nanotechnology 14, 1272 (2003).Google Scholar
4. Bonafos, C. et al. , J. Appl. Phys. 95, 5696 (2004).Google Scholar
5. Shalchian, M., Grisolia, J., Assayag, G. B., Coffin, H., Atarodi, S. M., and Claverie, A., Appl. Phys. Lett. 86, 163111 (2005).Google Scholar
6. Compagnoni, C. M., Gusmeroli, R., Ielmini, D., Spinelli, A. S., and Lacaita, L., J. Nanosci. Nanotechnol. 7, 193205 (2007).Google Scholar
7. Iannaccone, G. and Coli, P., Appl. Phys. Lett. 78, 2046 (2001).Google Scholar
8. Thean, A. and Leburton, J. P., IEEE Electron Device Lett. 22, 148 (2001).Google Scholar
9. Sousa, J. S. de, Thean, A. V., Leburton, J. P., and Freire, V. N., J. Appl. Phys. 92, 6182 (2002).Google Scholar
10. Clerc, R., Ghibaudo, G., and Pananakakis, G., in Proceedings of the 33rd Conference on European Solid-State Device Research, (ESSDERC '03, 2003) pp. 461464.Google Scholar
11. Cordan, A. S., Leroy, Y., and Leriche, B., Solid-State Electron. 50, 205 (2006).Google Scholar
12. Leriche, B., Leroy, Y., and Cordan, A.-S., J. Appl. Phys. 100, 074316 (2006).Google Scholar
13. Leroy, Y., Leriche, B., and Cordan, A.-S., in Proceedings of COMSOL Multiphysics Conference 2005, (COMSOL, Paris, 2005) pp. 129134.Google Scholar