Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-27T02:19:07.474Z Has data issue: false hasContentIssue false

Charge transport in nanocrystalline germanium/hydrogenated amorphous silicon mixed-phase thin films

Published online by Cambridge University Press:  10 May 2013

Kent E. Bodurtha
Affiliation:
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455
J. Kakalios
Affiliation:
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

Mixed phase thin films consisting of hydrogenated amorphous silicon (a-Si:H) in which germanium nanocrystals (nc-Ge) are embedded have been synthesized using a dual-chamber co-deposition system. Raman spectroscopy and x-ray diffraction measurements confirm the presence of 4 - 4.5 nm diameter nc-Ge homogenously embedded within the a-Si:H matrix. The conductivity and thermopower are studied as the germanium crystal fraction XGe is systematically increased. For XGe < 10%, the thermopower is n-type (as in undoped a-Si:H) while for XGe > 25% p-type transport is observed. For films with 10 < XGe < 25% the thermopower shifts from p-type to n-type as the temperature is increased. This transition is faster than expected from a standard two-channel model for charge transport.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yan, B., Yue, G., Xu, X., Yang, J., and Guha, S., Phys. Status Solidi 207, 671 (2010).CrossRefGoogle Scholar
Lee, C.-H., Sazonov, A., and Nathan, A., Appl. Phys. Lett. 86, 222106 (2005).CrossRefGoogle Scholar
Wienkes, L. R., Blackwell, C., and Kakalios, J., Appl. Phys. Lett. 100, 072105 (2012).CrossRefGoogle Scholar
Adjallah, Y., Anderson, C., Kortshagen, U., and Kakalios, J., J Appl Phys 107, 043704 (2010).CrossRefGoogle Scholar
Mangolini, L., Thimsen, E., and Kortshagen, U., Nano Lett. 5, 655 (2005).CrossRefGoogle Scholar
Parker, J. H., Feldman, D. W., and Ashkin, M., Phys. Rev. 155, 712 (1967).CrossRefGoogle Scholar
Bermejo, D. and Cardona, M., J. Non-Cryst. Solids 32, 405 (1979).CrossRefGoogle Scholar
Persans, P. D., Ruppert, A. F., Abeles, B., and Tiedje, T., Phys. Rev. B 32, 5558 (1985).CrossRefGoogle Scholar
Zabrodskii, A. G. and Shlimak, I. S., Sov. Phys. Semicond. 9, 391 (1975).Google Scholar
Moustakas, T. D., J. Electron. Mater. 8, 391 (1979).CrossRefGoogle Scholar
Chopra, K. L. and Bahl, S. K., Thin Solid Films 12, 211 (1972).CrossRefGoogle Scholar
Dyalsingh, H. M. and Kakalios, J., Phys. Rev. B 54, 7630 (1996).CrossRefGoogle Scholar
Street, R., J. Electron. Mater. 22, 39 (1993).Google Scholar
MacDonald, D. K. C., Thermoelectricity: An Introduction to the Principles (Courier Dover Publications, 1962).Google Scholar
Stewart, A. D., Jones, D. I., and Willeke, G., Philos. Mag. Part B 48, 333 (1983).CrossRefGoogle Scholar