Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-09T06:32:27.311Z Has data issue: false hasContentIssue false

Characterization and Optical Studies of Short-Period SimGen Superlattices

Published online by Cambridge University Press:  22 February 2011

H. Presting
Affiliation:
Daimler Benz Research Center Ulm, Wilhelm-Runge-Str. 11, D-7900 Ulm, Germany
H. Kibbel
Affiliation:
Daimler Benz Research Center Ulm, Wilhelm-Runge-Str. 11, D-7900 Ulm, Germany
E. Kasper
Affiliation:
Daimler Benz Research Center Ulm, Wilhelm-Runge-Str. 11, D-7900 Ulm, Germany
H. G. Grimmeiss
Affiliation:
Daimler Benz Research Center Ulm, Wilhelm-Runge-Str. 11, D-7900 Ulm, Germany
V. G. Nagesh
Affiliation:
Daimler Benz Research Center Ulm, Wilhelm-Runge-Str. 11, D-7900 Ulm, Germany
Get access

Abstract

Short-period SimGen (m monolayer (ML) Si, n ML Ge. n+m<∼40ML∼5.5nm) strained layer superlattices (SLS) are grown on <100> silicon by low temperature molecular beam epitaxy. Various characterization tools such as X-ray diffraction, transmission electron microscopy, Rutherford backscattering, Raman spectroscopy and photocapacitance measurements are used to analyze the growth quality, stram distribution, periodicity, interface sharpness and optical properties of the SLS. Recent photoluminescence experiments give hints of a direct bandgap transition from a 10 ML Si6Ge4 SLS in the near infrared spectral region. I-U and C-U measurements on mesa diodes (Am=2 10−4 cm2) are performed at various temperatures down to T=35K. Photocapacitance measurements show a Wannier-Stark localization of the superlattice states in a p+-n doped Si4Ge4 SLS diode, for the first time observed in type II superlattices. The observed transitions are believed to be defect or impurity related and are discussed in terms of a Wannier-Stark ladder behaviour.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gnutzmann, U. and Clausecker, K., Applied Physics 3, 9 (1974)CrossRefGoogle Scholar
2. Zachai, R., Eberl, K., Abstrelter, C., Kasper, E., and Klbbel, H., Phys. Rev. Letters 64, 1055 (1990)Google Scholar
3. Pearsall, T. P., Bevk, J., Feldman, L. C., Bonar, J. M., Mannaerts, J. P., and Ourmazd, A., Phys. Rev. Letters 58, 729 (1990); andGoogle Scholar
Pearsall, T. P., Bevk, J., Bean, J. C., Bonar, J. M., and Mannaerts, J. P., Phys. Rev. B39, 3741 (1989)CrossRefGoogle Scholar
4. Presting, H., Grimmeiss, H. G., Nagesh, V. G., Kibbel, H., and Kasper, E., Proceedings of the 20th ICPS, Thessaloniki, Greece (1990)Google Scholar
5. Kasper, E., Klbbel, H., and Presting, H., Thin Solid Films 183, p.8793 (1989)Google Scholar
6. see for example Kasper, E., Herzog, H. -J., Jorke, H., and Abstreiter, C.. Superlattlces and Microstructures 3, 141, (1987)Google Scholar
7. Turton, R. J. and Jaros, M., ESPRIT Basic Rsearch Action No. 3174, Proceedings of Workshop II, Ulm, Germany (1990)Google Scholar
8. Menczigar, U., Zachai, R. and Abstreiter, G.. ESPRIT Basic Research Action No. 3174, Proceedings of Workshop II, Ulm, Germany (1990); and U. Menczigar, (private communication)Google Scholar
9. Zachai, R., Ph. D. thesis. University of Munich, 1990 Google Scholar
10. Noel, J. -P., Rowell, N. L., Houghton, D. C., and Perovlc, D. D., Appl. Phys. Lett. 57, 1037 (1990); andGoogle Scholar
Noel, J. P., Rowell, N. L., and Houghton, D. C., Proceedings of the Symposium on Silicon Based Heterostructures, Toronto, Canada (1990)Google Scholar
11. Grimmeiss, H. G., Nagesh, V. G., Presting, H., Kibbel, H., and Kasper, E., Phys. Rev. B to be publishedGoogle Scholar
12. Grimeiss, H. G. and Ovren, C., J. Phys. E: Sci. Instr. 14, p. 1032–42 (1981)Google Scholar
13. Bleuse, J., Bastard, G., and Voisin, P.. Phys. Rev. Letters 6, 220 (1988).Google Scholar
14. Mendez, E. E., Agullo-Rueda, F., and Hong, J. M., Phys. Rev. Letters 60, 2426 (1988)Google Scholar
15. Whittaker, D. M., Skolnick, M. S., Smith, G. W., and Whitehouse, C. R.. Phys. Rev. B 42, 3591 (1990)Google Scholar
16. Wong, K. B., Jaros, M., Morrison, I., and Hagon, J. P., Phys. Rev. Letters 60, 2221 (1988)CrossRefGoogle Scholar