Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:24:43.099Z Has data issue: false hasContentIssue false

Chain Morphologies in Blue-Emitting Polyfluorenes: Impact on Light-Emitting Diodes

Published online by Cambridge University Press:  01 February 2011

Suchi Guha
Affiliation:
[email protected], University of Missouri, Physics, 223 Physics Bldg., Columbia, MO, 65211, United States, 573-884-3687, 573-882-4195
M. Arif
Affiliation:
[email protected], University of Missouri, Department of Physics, Columbia, MO, 65211, United States
C. Volz
Affiliation:
[email protected], University of Missouri, Department of Physics, Columbia, MO, 65211, United States
Get access

Abstract

Dioctyl-substituted polyfluorene (PF) is especially well known for the presence of an unusual spectral feature identified as the beta phase, known to originate in regions of enhanced chain planarity. Although this phase appears as a minority constituent it dominates the emission, resulting in a red shift of the luminescence. We present Raman scattering studies of poly[9,9'-(di n, octyl) fluorene] as a function of thermal cycling that establish a connection between the conformational isomers and chain morphology. Density-functional theory calculations of the vibrational spectra of single chain oligomers in conjunction with our experimental results demonstrate the incompatibility of the beta phase with the overall alpha crystalline phase. Further, electroluminescence and photoluminescence measurements from PF-based light-emitting diodes are presented and discussed in terms of the crystalline phases and chain morphologies in the PFs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hoeben, F. J. M., Jonkheijm, P., Meijer, E.W., and Schenning, A. P. H. J., Chem. Rev. 105, 1491 (2005).Google Scholar
2 Leclerc, M., J. Polym. Sci. A 39, 2867 (2001).Google Scholar
3 Scherf, U. and List, E.J.W., Adv. Mater. 14, 477 (2002).Google Scholar
4 Neher, D., Macromol. Rapid Commun. 22, 1366 (2001).Google Scholar
5 Grell, M., Bradley, D.D.C., Ungar, G., Hill, J., and Whitehead, K.S., Macromolecules 32, 5810 (1999).Google Scholar
6 Tanto, B., Guha, S., Martin, C.M., Scherf, U., and Winokur, M.J., Macromolecules 37, 9438 (2004).Google Scholar
7 Knaapila, M., Stepanyan, R., Lyons, B. P., Torkkeli, M., Hase, T.P.A., Serimaa, R., Güntner, R., Seeck, O.H. Scherf, U., and Monkman, A. P., Macromolecules 38, 2744 (2005).Google Scholar
8 Chunwaschirasiri, W., Tanto, B., Huber, D. L., and Winokur, M.J., Phys. Rev. Lett. 94, 107402 (2005).Google Scholar
9 Chen, S. H., Su, A. C., Su, C. H., and Chen, S. A., Macromolecules 38, 379 (2005).Google Scholar
10 Arif, M., Volz, C., and Guha, S., Phys. Rev. Lett. 96, 025503 (2006).Google Scholar
11 Gaussian 03, Gaussian, Inc., Pittsburgh, PA, 2003.Google Scholar
12 Becke, A.D., J. Chem. Phys. 98, 5648 (1993).Google Scholar
13 Porezag, D. and Pederson, M.R., Phys. Rev. B 54, 7830 (1996).Google Scholar
14 Guha, S., Graupner, W., Resel, R., Chandrasekhar, M., Chandrasekhar, H.R., Glaser, R., and Leising, G., J. Phys. Chem. 105, 6203 (2001).Google Scholar
15 Winokur, M.J., Slinker, J., and Huber, D.L., Phys. Rev. B 67, 184106 (2003).Google Scholar
16 Witt, K., Spectrochim. Acta A 24, 1115 (1968).Google Scholar
17 Cuff, L., and Kertesz, M., J. Phys. Chem. 98, 12223 (1994).Google Scholar
18 Zerbi, G., Magni, R., Gussoni, M., Moritz, K.H., Bigotto, A., and Dirlikov, S., J. Chem. Phys. 75, 3175 (1981).Google Scholar
19 Martin, C.M., Guha, S., Chandrasekhar, M., Chandrasekhar, H.R., Guentner, R., Freitas, P. Scanduiccide, and Scherf, U., Phys. Rev. B 68, 115203 (2003).Google Scholar