Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:47:08.574Z Has data issue: false hasContentIssue false

Cathodoluminescence Spectroscopy of Boron Nitride Films

Published online by Cambridge University Press:  21 February 2011

C. A. Taylor II
Affiliation:
Harrison M. Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109–1120
S. W. Brown
Affiliation:
Harrison M. Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109–1120
V. Subramaniam
Affiliation:
Harrison M. Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109–1120
S. Kidner
Affiliation:
Harrison M. Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109–1120
S. C. Rand
Affiliation:
Harrison M. Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109–1120
R. Clarke
Affiliation:
Harrison M. Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109–1120
Get access

Abstract

We report results from cathodoluminescence spectroscopy of boron nitride films grown on Si (100) substrates by ECR ion source assisted magnetron sputtering of a hexagonal BN target. Three main peaks are observed in the near-bandgap region for hexagonal boron nitride films at energies of 4.90 eV, 5.31 eV, and 5.50 eV. In addition, deep-level emission spectra of predominantly cubic boron nitride films are correlated with sample growth conditions. In particular we show that the emission intensity, position, and linewidth are strongly dependent on the substrate bias voltage used during sample growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wide Band Gap Semiconductors. Moustakas, T. D., Pankove, J. I., and Hamakawa, Y., eds., (Mat. Res. Soc. Symp. Proc. 242, San Francisco, CA, 1991).Google Scholar
2. Larach, S. and Shrader, R. E., Physical Review 104, 68 (1956).Google Scholar
3. Pipkin, N. J., J. Mat. Sci. 15, 2651 (1980).Google Scholar
4. Shipilo, V. B., Shishonok, E. M., Zaitsev, A. M., Melnikov, A. A., and Olekhnovich, A. I., Phys. Stat. Sol. (a) 108, 431 (1988).Google Scholar
5. Mishima, O., Era, K., Tanaka, J., and Yamaoka, S., Appl. Phys. Lett. 53, 962 (1988).Google Scholar
6. Shishonok, E. M., Shipilo, V. B., Lukomskii, A. I., and Rapinchuk, T. V., Phys. Stat. Sol. (a) 115, K237 (1989).Google Scholar
7. Shipilo, V. B., Lukomskii, A. I., and Gameza, L. M., Zhur. Prikl. Spektr. 55, 567 (1991).Google Scholar
8. Lukomskii, A. I., Shipilo, V. B., and Gameza, L. M., Zhur. Prikl. Spektr. 57, 100 (1992).Google Scholar
9. Kidner, S., Taylor, C. A. II, and Clarke, R., Appl. Phys. Lett. 64, 1859 (1994).Google Scholar
10. System response, measured with a deuterium lamp source, indicates that our current optical system has a wavelength limit of -210 nm (∼5.9 eV).Google Scholar
11. Hoffman, D. M., Doll, G. L., and Eklund, P. C., Phys. Rev. B 30, 6051 (1984).Google Scholar
12. Gielisse, P. J., Mitra, S. S., Plendl, J. N., Griffis, R. D., Mansur, L. C., Marshall, R., and Pascoe, E. A., Phys. Rev. 155, 1039 (1967).Google Scholar
13. Kester, D. J., Ailey, K. S., Davis, R. F., and More, K. L., J. Mater. Res. 8, 1213 (1993).Google Scholar
14. Ruan, J., Kobashi, K., and Choyke, W. J., Appl. Phys. Lett. 60, 1884 (1992).Google Scholar
15. Collins, A. T., Kamo, M. and Sato, Y., J. Mater. Res. 5, 2507 (1990).Google Scholar
16. Zunger, A., Katzir, A., and Halperin, A., Phys. Rev. B 13, 5560 (1976).Google Scholar