Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T06:26:28.405Z Has data issue: false hasContentIssue false

Carrier Dynamics and Defects in Bulk 1eV InGaAsNSb Materials and InGaAs Layers with MBL Grown by MOVPE for Multi-junction Solar Cells

Published online by Cambridge University Press:  09 January 2013

Yongkun Sin
Affiliation:
Electronics and Photonics Lab, The Aerospace Corporation, El Segundo, CA 90245
Stephen LaLumondiere
Affiliation:
Electronics and Photonics Lab, The Aerospace Corporation, El Segundo, CA 90245
Brendan Foran
Affiliation:
Electronics and Photonics Lab, The Aerospace Corporation, El Segundo, CA 90245
William Lotshaw
Affiliation:
Electronics and Photonics Lab, The Aerospace Corporation, El Segundo, CA 90245
Steven C. Moss
Affiliation:
Electronics and Photonics Lab, The Aerospace Corporation, El Segundo, CA 90245
Tae Wan Kim
Affiliation:
Electrical and Computer Engineering Dept, University of Wisconsin – Madison, Madison, WI 53706
Steven Ruder
Affiliation:
Chemical and Biological Engineering Dept, University of Wisconsin – Madison, Madison, WI 53706
Luke J. Mawst
Affiliation:
Electrical and Computer Engineering Dept, University of Wisconsin – Madison, Madison, WI 53706
Thomas F. Kuech
Affiliation:
Chemical and Biological Engineering Dept, University of Wisconsin – Madison, Madison, WI 53706
Get access

Abstract

Multi-junction III-V solar cells are based on a triple-junction design that employs a 1eV bottom junction grown on the GaAs substrate with a GaAs middle junction and a lattice-matched InGaP top junction. There are two possible approaches implementing the triple-junction design. The first approach is to utilize lattice-matched dilute nitride materials such as InGaAsN(Sb) and the second approach is to utilize lattice-mismatched InGaAs employing a metamorphic buffer layer (MBL). Both approaches have a potential to achieve high performance triple-junction solar cells. A record efficiency of 43.5% was achieved from multi-junction solar cells using the first approach [1] and the solar cells using the second approach yielded an efficiency of 41.1% [2]. We studied carrier dynamics and defects in bulk 1eV InGaAsNSb materials and InGaAs layers with MBL grown by MOVPE for multi-junction solar cells.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wiemer, M., Sabnis, V., Yuen, H., Proceedings of SPIE, 8108, 810804–1 (2011).CrossRefGoogle Scholar
Geisz, J. F., Friedman, D. J., Ward, J. S., Duda, A., Olavarria, W. J., Moriarty, T. E., Kiehl, J. T., Romero, M. J., Norman, A. G., and Jones, K. M., J. Appl. Phys. 93, 123505 (2008).Google Scholar
Jackrel, David B., Bank, Seth R., Yuen, Homan B., Wistey, Mark A., and Harris, James S., Ptak, Aaron J., Johnston, Steven W., Friedman, Daniel J., and Kurtz, Sarah R., J. Appl. Phys. 101, 114916 (2007).CrossRefGoogle Scholar
Sin, Y., LaLumondiere, S., Lotshaw, W. T., Moss, S. C., Garrod, T., Kim, T. W., Kirch, J., Mawst, L. J., Proceedings of SPIE, 7933, 79330H (2011).CrossRefGoogle Scholar
Lee, K. E. and Fitzgerald, E. A., J. Crystal Growth 312, 2010.Google Scholar
Dimroth, F., Howard, A., Shurtleff, J. K., and Stringfellow, G. B., J. Appl. Phys. 91, p. 36873692, 2002.CrossRefGoogle Scholar
Kim, T. W., Garrod, T. J., Kim, K., Lee, J. J., LaLumondiere, S. D., Sin, Y., Lotshaw, W. T., Moss, S. C., Kuech, T. F., Tatavarti, Rao, and Mawst, L. J., Appl. Phys. Lett. 100, 121120 (2012).CrossRefGoogle Scholar
Johnston, S. W., Ahrenkiel, R. K., Friedman, D. J., and Kurtz, S. R., Twenty-Ninth IEEE PVSC, pp. 10231026, 2002.Google Scholar
Friedman, D. J., Geisz, J. F., Metzger, W. K., and Johnston, S. W., Appl. Phys. Lett. 83, p. 698700, 2003.CrossRefGoogle Scholar
Zhang, S. B. and Wei, S. H., Phys. Rev. Lett. 86, p.1789, 2001.CrossRefGoogle Scholar