Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T06:37:58.518Z Has data issue: false hasContentIssue false

Carbon-Related Deep-Level Defects and Turn-On Recovery Characteristics in AlGaN/GaN Hetero-Structures

Published online by Cambridge University Press:  06 February 2014

Yoshitaka Nakano
Affiliation:
Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan
Yoshihiro Irokawa
Affiliation:
National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
Masatomo Sumiya
Affiliation:
National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
Yasunobu Sumida
Affiliation:
POWDEC, 1-23-15 Wakagi, Oyama, Tochigi 323-0028, Japan
Shuichi Yagi
Affiliation:
POWDEC, 1-23-15 Wakagi, Oyama, Tochigi 323-0028, Japan
Hiroji Kawai
Affiliation:
POWDEC, 1-23-15 Wakagi, Oyama, Tochigi 323-0028, Japan
Get access

Abstract

We have investigated on a relation between C-related deep-level defects and turn-on recovery characteristics in bulk regions of AlGaN/GaN hetero-structures containing various C concentrations, employing their Schottky barrier diodes. With decreasing the growth temperature of the GaN buffer layer, three specific deep-level defects located at ∼2.07, ∼2.75, and ∼3.23 eV below the conduction band were significantly enhanced probably due to the C impurity incorporation into the GaN buffer layer. Among them, the ∼2.75 and ∼3.23 eV levels are considered to be strongly responsible for the two-dimensional electron gas (2DEG) carrier trapping in the bulk regions of the hetero-structures, from their turn-on current recovery characteristics under various optical illuminations.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bradley, S. T., Young, A. P., Brillson, L. J., Murthy, M. J., Schaff, W. J., and Eastman, L. F., IEEE Trans. Electron Devices 48, 412 (2001).CrossRefGoogle Scholar
Nakano, Y., Irokawa, Y., Sumida, Y., Yagi, S., and Kawai, H., J. Appl. Phys. 112, 106103 (2012).CrossRefGoogle Scholar
Niebuhr, R., Bachem, K., Bombrowski, K., Maier, M., Plerschen, W., and Kaufmann, U., U., J. Electron. Mater. 24, 1531 (1995).CrossRefGoogle Scholar
Armstrong, A., Arehart, A. R., Moran, B., DenBaars, S. P., Mishra, U. K., Speck, J. S., Ringel, S. A., Appl. Phys. Lett. 84, 374 (2004).CrossRefGoogle Scholar
Nakano, Y., Irokawa, Y., and Takeguchi, M., Appl. Phys. Express 1, 091101 (2008).CrossRefGoogle Scholar
Son, N. T., Hemmingsson, C. G., Paskova, T., Evans, K. R., Usui, A., Morishita, N., Ohshima, T., Isoya, J., Monemar, B., Janzen, E., Phys. Rev. B 80, 153202 (2009).CrossRefGoogle Scholar
Seager, C. H., Wright, A. F., Yu, J., and Götz, W., J. Appl. Phys. 92, 6553 (2002).CrossRefGoogle Scholar
Klein, P. B., Binari, S. C., Ikossi, K., Wickenden, A. E., Koleske, D. D., and Henry, R. L., Appl. Phys. Lett. 79, 3527 (2001).CrossRefGoogle Scholar