Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:47:25.542Z Has data issue: false hasContentIssue false

Atomistic Simulations of Damage Evolution in Silicon

Published online by Cambridge University Press:  10 February 2011

Marius M. Buneat
Affiliation:
Department of Physics, Department of Electrical and Computer EngineeringBoston University. Boston, MA 02215.
Pavel Fastenko
Affiliation:
Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, http://engc.bu.edu/-mbunea
Scott T. Dunham
Affiliation:
Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, http://engc.bu.edu/-mbunea
Get access

Abstract

We have studied the damage annealing process using kinetic lattice Monte Carlo (KLMC) and molecular dynamics (MD) with initial damage distribution from Monte Carlo ion implant simulations. MD calculations find a long range interstitial vacancy interaction, as also seen in previous tight-binding molecular dynamics (TBMD) simulations.1 The influence of the long range interaction as well as the initial spatial correlations present in the implant damage are then analyzed with KLMC in the form of corrections to the +1 model. We find that both long range interactions and the initial spatial correlations are significant at low doses, while the effects disappear at high doses.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tang, M., Colombo, L., Zhu, J. and Diazde la Rubia, T., Phys. Rev B 55, 14279, (1997).Google Scholar
2. Chason, E., Picraux, S. T., Poate, J. M., Borland, J. O., Current, M. I., Rubia, T. Diaz de la, Eaglesham, D. J., Holland, O. W., Law, M. E., Magee, C. W., Mayer, J. W., Melngailis, J., Tash, A. F., J. Appl. Phys. 81, 6513 (1997).Google Scholar
3. Eaglesham, D. J., Stolk, P. A., Gossman, H. J. and Poate, J. M., Appl. Phys. Lett 65, 2305 (1994).Google Scholar
4. Caturla, M. J., Johnson, M. D., Rubia, T. Diaz de la, Appl. Phys. Lett 65, 2305 (1994).Google Scholar
5. Giles, M. D., J. Electrochem. Soc. 138, 1160 (1991).Google Scholar
6. Mathiot, D. and Pfister, J. C., J. Appl. Phys. 55 3518 (1984)Google Scholar
7. Jaraiz, M., Gilmer, G. H. and Poate, J. M., Appl. Phys. Lett. 68, 409 (1996).Google Scholar
8. Pelaz, L., Gilmer, G. H., Jaraiz, M., Herner, S. B., Gossmann, H. J., Eaglesham, D. J., Hobler, G., Rafferty, C. S. and Barbolla, J., Appl. Phys. Lett. 73, 1421 (1998).Google Scholar
9. Bazant, M. Z. and Kaxiras, E., Phys. Rev. Lett. 77, 4370 (1996).Google Scholar
10. Bazant, M. Z., Kaxiras, E., and Justo, J. F., Phys. Rev. B 56, 8542 (1997).Google Scholar
11. Justo, J. F., Bazant, M. Z., Kaxiras, E., Bulatov, V. V. and Yip, S., Phys. Rev B 58, 2539, (1998).Google Scholar
12. Obradovic, B., Wang, G., Snell, C., Balamurugan, G., Morris, M. F., Chen, Y. and Tash, A. F., UT-Marlowe User Manual, 1997, Unversity of Texas at Austin.Google Scholar
13. Bunea, M. M. and Dunham, S. T., in Semiconductor Process and Device Performance Modeling, ed. by Dunham, S. T. and Nelson, J. S.. (Mat. Res. Soc. Proc. 490, Pittsburgh, PA, 1998) pp. 38.Google Scholar