Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T23:05:14.960Z Has data issue: false hasContentIssue false

The Atomic-Scale Characterization of Defects on Cleaved Vanadium and Molybdenum Oxide Surfaces Using Stm

Published online by Cambridge University Press:  15 February 2011

Gregory S. Rohrer
Affiliation:
Carnegie Mellon University Department of Materials Science and Engineering Pittsburgh PA 15213
Richard L. Smith
Affiliation:
Carnegie Mellon University Department of Materials Science and Engineering Pittsburgh PA 15213
Get access

Abstract

Scanning tunneling microscopy (STM) was used to determine the structure of cleaved, single crystal surfaces of V205, V6013, Mo18052, and Mo8023. Constant current images were recorded in ultrahigh vacuum and in air. By imaging well-defined surfaces that exhibit structural and chemical similarities, and comparing the observations to the known bulk structures, it is possible to establish a reliable interpretation for the contrast in the STM images. A comparison of images from the V6013(001) and the V205(001) surfaces clearly shows that the surface V coordination polyhedra that are capped by vanadyl 0 can be distinguished from those that are not. This allows vacancies in the vanadyl 0 position to be identified on cleaved V205(001) surfaces. Mo18052(100) and Mo8023(010) provide models for two different characteristic types of surface/crystallographic shear (CS) plane intersections. The shear in Mo8023 lies in the (010) surface plane and creates dark contrast along the [001]. The CS planes in Mo18052, on the other hand, have components of shear both in and normal to the (100) surface plane and create white contrast parallel to [010]. These standards for contrast identification can be used to identify defects on inhomogeneous surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Germain, J. E., in Adsorption and Catalysis on Oxide Surfaces, edited by Che, M. and Bond, G. C. (Elsevier, Ansterdam, 1985) p. 355.Google Scholar
[2] Haber, J., in Solid State Chemistry in Catalysis edited by Grasselli, R. and Brazdil, J. (American Chemical Society, Washington D.C., 1985) p. 1.Google Scholar
[3] Smith, M. K. and Ozkan, U. S., J. Catalysis 141, 124 (1993).Google Scholar
[4] McCormick, R. L. and Schrader, G. L., J. Catalysis 113, 529 (1988).Google Scholar
[5] Barber, S., Booth, J., Pike, R. D., Reid, R., Tilley, R. J. D., J. Catalysis 77, 180 (1982).Google Scholar
[6] Farneth, W. E., McCarron, E. M. III, Sleight, A. W., Staley, R. H., Langmuir 3, 217 (1987).Google Scholar
[7] Firment, L. E. and Ferrretti, A., Surface Science 129, 155 (1983).Google Scholar
[8] Colpaert, M. N., Clauws, P., Fiermans, L., and Vennik, J., Surface Science 36, 513 (1973).Google Scholar
[9] Rohrer, G. S., Henrich, V. E., Bonnell, D. A., Science 250, 1239 (1990).Google Scholar
[10] Murray, P. W., Leibsle, F. M., Fisher, H. J., Flipse, C. F. J., Muryn, C. A., Thornton, G., Phys. Rev. B 46, 12877 (1992).Google Scholar
[11] Matsumoto, T., Tanaka, H., Kawai, T., Kawai, S., Surface Science Letters 278, L153 (1992).Google Scholar
[12] Tarrach, G., Btirgler, D., Schaub, T., Wiesendanger, R., Guintherodt, H. J., Surface Science 285, 1 (1993).Google Scholar
[13] Lu, W., Nevins, N., Norton, M. L., and Rohrer, G. S., Surface Science 291, 395 (1993).Google Scholar
[14] Rohrer, G. S., Lu, W., Norton, M. L., Blake, M. A., Rohrer, C. L., J. Solid State Chem. 109, 359 (1994).Google Scholar
[15] Rohrer, G. S., Lu, W., Smith, R. L., and Hutchinson, A., Surface Science 292, 261 (1993).Google Scholar
[16] Bertrand, O., Floquet, N. and Jacquot, D., J. Crystal Growth 96, 708 (1989).Google Scholar
[17] Nagasawa, K., Bando, Y., Takada, T., J. Crystal Growth 17, 143 (1972).Google Scholar
[18] Smith, R. L., Lu, W., and Rohrer, G. S., Surface Science, in press.Google Scholar
[19] Goodenough, J. B., in Progress in Solid State Chemistry, Vol. 5, edited by Reiss, H. (Pregamon Press, Oxford, 1972) p. 145.Google Scholar
[20] Wilhelmi, K.-A., Waltersson, K., Kihlborg, L., Acta Chem. Scand. 25, 2675 (1971).Google Scholar
[21] Kempf, J. Y., Silvi, B., Dietrich, A., C. Catlow, R. A., Maigret, B., Chem. Mater. 5, 641 (1993).Google Scholar
[22] Kofstad, P., Nonostoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides (R. E. Krieger, Malabar, FL, 1983) p. 57.Google Scholar
[23] Fiermans, L., Clauws, P., Lambrecht, W., Vandenbroucke, L., Vennik, J., Phys. Status Solidi(a) 59, 485 (1980).Google Scholar
[24] Kihlborg, L., Ark. Kemi. 21, 443 (1963).Google Scholar
[25] Kihlborg, L., Ark. Kemi. 21, 461 (1963).Google Scholar
[26] Kihlborg, L., Ark. Kemi. 21, 471 (1963).Google Scholar
[27] Heil, J., Wesner, J., Lommel, B., Assmus, W., and Grill, W., J. Appl. Phys. 65, 5220 (1989).Google Scholar
[28] Garfunkel, E., Rudd, G., Novak, D., Wang, S., Ebert, G., Greenblatt, M., Gustafsson, T., and Garofalini, S. H., Science 246, 99 (1989).Google Scholar
[29] Walter, U., Thomson, R. E., Burk, B., Crommie, M. F., Zettl, A., and Clarke, J., Phys. Rev. B 45, 11474 (1992).Google Scholar